SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2015
 (CUCBCSS-UG)
 Complementary Course
 Mathematics
 MAT 2C 02—MATHEMATICS

Time : Three Hours
Maximum : 80 Marks

Part A

Answer all questions,

1. Define a smooth curve.
2. Write down the relation connecting $\sin x$ and $\sinh x$.
3. Evaluate $\int_{0}^{1} \frac{d x}{\sqrt{x}}$.
4. Give an example of a non-decreasing sequence.
5. State Sandwich theorem for the sequence.
6. Define absolute convergent sequence.
7. Find the equation for a hyperbola with eccentricity $=3 / 2$ and directrix $x=2$.
8. What is the formula in polar co-ordinates for the area of the surface generated by revolving the curve about the x-axis.
9. Find the equation of the circular cylinder $4 x^{2}+4 y^{2}=9$ in cylindrical co-ordinates.
10. Define level surface of f.
ii Find $\lim _{y) \rightarrow(0} \begin{array}{r}x-x y \pm \underline{3}_{3} \\ x^{2}+5 x y+y\end{array}$
11. Write down the chain rule for finding $d w / d t$ if $w=f(\mathrm{x}, \mathrm{y}, z)$ is differentiale and all $\mathrm{x}, \mathrm{y}, z$ are differentiable functions of t.
12. Find the volume of the solid generated by revolving the region between the parabola $x=y^{2} * 1$ and the line $\mathrm{x}=3$ about the line $\mathrm{x}=3$.
13. Find the length of the curve $y=\int_{3}^{4 \sqrt{2}} x^{3 / 2}$
14. Find the area under the curve y $1 / \sqrt{x}$ from $\mathrm{x}=0$ to $\mathrm{x}=$
15. Show that $\lim _{n \rightarrow \infty} k=k$.
16. Find $\lim _{n \rightarrow \infty} 1 / n^{n}$.
17. Graph the set of points whose polar coordinates satisfy $1<r<2,0<0<\pi / 2$.
18. Find all Cartesian equation of $r \cos \theta=-4$.
19. Find $\lim _{(x, y) \rightarrow(1,1)} \frac{-y}{x-1}-\frac{-2 x}{x}+2$
20. Find f_{λ} if $f(x, y)=x^{2}+3 x y+y$
21. Find the length of the curve $r=1-\cos 0$.
22. Find the length of curve $\mathrm{y}=(x / 2)^{2 /}$ from $\mathrm{x}=0$ to $\mathrm{x}=2$.
23. Find the directrix of the parabola $r=\frac{25}{10+10} \cos \theta$

Part C

Answer any six questions.
25. Compare ${ }^{\infty} \frac{d x}{x^{2}}$ and $\int_{1}{ }_{1+}^{d x}$
26. Find the lateral surface area of the cone generated by revolving the line segment $\mathbf{x}=1 \quad y, 0<y 5_{-} 1$ about y-axis.
27. Find the length of $y=x^{312}$ from $x=0$ to $x=4$.
28. Find the radius of convergence of

$$
n!^{\circ}
$$

29. Find the Taylor series generated by $f(x)=x^{3}-2 x+4$ about $a=\mathbf{2}$.
30. Graph the curve $r^{2}=4 \cos 0$.
31. Find the area of the region lie inside $r=1$ and outside $r=1-\cos \mathbf{0}$.
32. Show that $f\left(x^{\prime} Y\right) \quad \frac{2 x y}{x^{-}}$has no limit as (x, y) approaches to (0,0).
33. Find $d w l d t$ at $t=\mathbf{0}$ if $\mathbf{w}=x y+z, \boldsymbol{x}=\cos t, \mathbf{y}=\sin t, z=\boldsymbol{t}$.

$$
(6 \times 5=30 \text { marks })
$$

Part D

Answer any two questions.
34. Write down the shell formula. Using this find the volume of the solid generated for the following problems.
(a) The region bounded by $y=\sqrt{x}$, the x-axis and the line $x=4$ revolved about x-axis.
(b) The region in the first quadrant bounded by $y=x^{2}, y$-axis and the line $y=1$ revolved about $\mathbf{x}=\mathbf{2}$.
35. Define radius and interval of convergence. Investigate the convergence of $\sum_{n=0}^{\infty} 2^{\prime \prime}+5, \quad \mathbf{n}^{2}$.
36. (a) Write the chain rule and draw the tree diagram for finding $\begin{array}{lll}\partial w & \partial w \\ \partial r & \text { as }\end{array}$ if $\mathbf{w}=\mathbf{x}^{2}+\mathbf{y}^{2}$

$$
x=r-s, y=r+s
$$

(b) Using Implicit differentiation, find $d y I d x$ if $\mathbf{x}^{2}+\sin y 2 y=0$.

