SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2012 (CCSS)

Statistics-Complementary Course ST 2C 02—PROBABILITY DISTRIBUTION

Time : Three Hours

Maximum : 30 Weightage
I. Answer all 12 questions

1 The joint cumulative distribution function $\mathrm{F}(\mathrm{x}, \mathrm{y})$ lies within the limits.
(a) -1 and 1 .
(b) - 1 and 0 .
(c) - co and + co.
(d) 0 and 1 .
$2 \mathbf{P}\{\mathbf{X} \leq a, \mathbf{Y}<=\mathbf{P}\{\mathbf{X}<a, \mathbf{Y} b\}$ provided.
(a) X and Y are discrete random variables.
(b) X and Y are continuous random variables.
(c) X and Y are independent random variables.
(d) X and Y are dependent random variables.

3 If X and Y are independent random variables, then
(a) $\mathbf{P} \mathbf{P C} \quad x, \mathbf{Y} \mathbf{y}\}=\mathbf{P}\{\mathbf{X} \longrightarrow \mathbf{P}\{\mathbf{Y}$
(b) $\mathrm{E}(\mathrm{XY})=\mathrm{E}(\mathrm{X}) \cdot \mathrm{E}(\mathrm{Y})$.
(d) All the above.

4 The (1,1) product moment μ_{1} of a bivariate distribution is called.
(a) Coefficient of Correlation.
(b) Coefficient of determination.
(c) Covariance.
(d) None of these.
$5 \mathrm{E}\{\mathrm{E}(\mathrm{NY})\}=$
(a) Zero.
(b) one.
(d) $\mathrm{E}(\mathrm{X})$.

6 If X and Y are independent binomial $B(\quad)$ variates, then $Z=X+Y$ follows
(a) $\mathrm{B}\left(6, \frac{1}{2}\right)$.
(b) $\mathrm{B}\left(3, \frac{1}{2}\right)$.
(c) BI $\left.6, \frac{1}{4}\right)$.
(d) $\mathrm{B}\left(3, \frac{1}{4}\right)$.

7 Variance of a discrete uniform distribution over the range [1, 111 is :
(a) 3.
(b) 6 .
(c) 10 .
(d) None of these.

8 If X has density $f(x)=X \quad x>0, \lambda>0$, then $E\left(X^{-}\right)$is
(a) λ^{2}
(b) $\frac{1}{\lambda^{2}}$.
(c) 2λ.
(d) $\frac{2}{\lambda^{2}}$.

9 Gamma distribution $G(a)$ is :
(a) Leptokurtic.
(b) Mesokurtic.
(c) Plattikurtic.
(d) Leptokurtic when $\mathrm{a}>1$.

10 If X_{1} and X_{2} are independent standard normal variates, $E\left(X_{1}-X_{2}\right)^{2}$ is
(a) 0.5 .
(b) 0.
(c) 1 .
(d) 2 .

11 If \mathbf{X} is a standard normal variate, the value of t for which $\mathbf{P}\{|\mathbf{X}|>t\}=0.05$ is
(a) 1.645 .
(b) 1.96 .
(c) 1.98 .
(d) 2.34 .

12 The income of people exceeding a certain limit follows :
(a) Cauchy.
(b) Lognormal.
(c) Pareto.
(d) Beta.
II. Short answer type questions. Answer all 9 questions,

13 Define cumulative distribution function of a bivariate random vector (\mathbf{X}, Y).
14 Define conditional probability density function of Y given X.
15 Define conditional expectation in discrete case.
16 Define mathematical expectation of a bivariate random vector.
17 State the lack of memory property of geometric distribution.
18 Find the moment generating function of a degenerate distribution.
19 Define standard exponential distribution.
20 State the additive property of gamma distribution.
21 Define Pareto distribution.
$(9 \times 1=9$ weightage)
III. Short essay or paragraph questions. Answer any five questions.

22 Let $\mathrm{f} \quad=\begin{aligned} & 2,0<\mathbf{x}<1 ; 0<y<x \\ & 0, \text { otherwise, }\end{aligned}$
check whether X and Y are independent.
23 For a distribution with joint probability density function

$$
\begin{array}{ll}
x e^{-\left(1+y^{\prime}\right.} & , \mathbf{x}>0 ;\} \geq 0 \\
\{0 & , \text { elsewhere }
\end{array}
$$

Find $E(Y)$ and $E(X)$.
24 Obtain an expression for variance of a random variable X in terms of conditional variance.
25 Derive the moment generating function of a rectangular distribution over $[-a, a]$. Hence obtain its variance.

26 Obtain the mode of a Poisson distribution.
27 Derive an expression for mean deviation about mean of normal distribution.
28 For a distribution with probability mass function $p(x)=2, x=1,2, \ldots$, Obtain a lower bound to the probability $p\{I X-2 \mid: 2\}$, by using Chebychev's inequality.
($5 \times 2=10$ weightage)
N. Essay questions. Answer any two questions.

29 Three coins are tossed. Let X denote the number of heads on the first two coins and Y denote the number of heads on the last two : Find (i) $E(Y \mid X=1)$ and (ii) Correlation coefficient between X and Y.

30 (a) State and establish Renovsky formula.
(b) Explain important properties and applications of normal distribution.

31 (a) State Bienayme-Chebychev's inequality.
(b) State and prove Lindberg-Levy form of CU.

