Reg.

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2012

(CCSS)

Statistics—Complementary Course

ST 2C 02—PROBABILITY DISTRIBUTION

Time : Three Hours

Maximum : 30 Weightage

I. Answer all 12 questions

1 The joint cumulative distribution function F (x, y) lies within the limits.

(a) -1 and 1. (b) -1 and 0. (c) - co and \pm co. (d) 0 and 1.

2 P { $X \leq a, Y \leq = P$ { $X \leq a, Y = b$ } provided.

- (a) X and Y are discrete random variables.
- (b) X and Y are continuous random variables.
- (c) X and Y are independent random variables.
- (d) X and Y are dependent random variables.

3 If X and Y are independent random variables, then

- (a) **PPC** $x, y = P \{x P \}$
- (b) $E(XY) = E(X) \cdot E(Y)$.
- (d) All the above.

4 The (1,1) product moment μ_1 of a bivariate distribution is called.

- (a) Coefficient of Correlation. (b) Coefficient of determination.
- (c) Covariance. (d) None of these.

 $5 E \{E (NY)\} =$

(a) Zero. (b) one.

(d) E (X).

6 If X and Y are independent binomial **B**

٠

(a)
$$B\left(6,\frac{1}{2}\right)$$
.
(b) $B\left(3,\frac{1}{2}\right)$.
(c) $BI \ 6,\frac{1}{4}$.
(d) $B\left(3,\frac{1}{4}\right)$.

7 Variance of a discrete uniform distribution over the range [1, 111 is :

 (a) 3.
 (b) 6.

 (c) 10.
 (d) None of these.

8 If X has density f(x) = X $x > 0, \lambda > 0$, then $E(X^{-})$ is

(a) λ^2 (b) $\frac{1}{\lambda^2}$. (c) $2\lambda^2$. (d) $\frac{2}{\lambda^2}$.

9 Gamma distribution G (a) is :

(a)	Leptokurtic.	(b) Mesokurtic.
(c)	Plattikurtic.	(d) Leptokurtic when $a > 1$.

10 If X_1 and X_2 are independent standard normal variates, $E(X_1 - X_2)^2$ is

(a) 0.5. (b) 0.(c) 1. (d) 2.

11 If X is a standard normal variate, the value of t for which $P\{|X| > t\} = 0.05$ is

(a) 1.645. (b) 1.96. (c) 1.98. (d) 2.34.

12 The income of people exceeding a certain limit follows :

(a) Cauchy.(b) Lognormal.(c) Pareto.(d) Beta.

(12 x = 3 Weightage)

II. Short answer type questions. Answer all 9 questions.

13 Define cumulative distribution function of a bivariate random vector (X, Y).

14 Define conditional probability density function of Y given X.

15 Define conditional expectation in discrete case.

16 Define mathematical expectation of a bivariate random vector.

17 State the lack of memory property of geometric distribution.

18 Find the moment generating function of a degenerate distribution.

19 Define standard exponential distribution.

20 State the additive property of gamma distribution.

21 Define Pareto distribution.

(9 x 1=9 weightage)

III. Short essay or paragraph questions. Answer any five questions.

22 Let f = 2, 0 < x < 1; 0 < y < x0, otherwise,

check whether X and Y are independent.

23 For a distribution with joint probability density function

$$x e^{-x + y^{1}}, x > 0; y \ge 0$$

{o, elsewhere,

Find E (Y) and E (\mathbb{Y}).

24 Obtain an expression for variance of a random variable X in terms of conditional variance.

25 Derive the moment generating function of a rectangular distribution over [-a, a]. Hence obtain its variance.

26 Obtain the mode of a Poisson distribution.

27 Derive an expression for mean deviation about mean of normal distribution.

28 For a distribution with probability mass function $p(x) = 2^{-1}$, x = 1, 2, ..., Obtain a lower bound

to the probability $p\{I \ge -2 \mid 2\}$, by using Chebychev's inequality.

 $(5 \times 2 = 10 \text{ weightage})$

Turn over

N. Essay questions. Answer any two questions.

٠

- 29 Three coins are tossed. Let X denote the number of heads on the first two coins and Y denote the number of heads on the last two : Find (i) E(Y|X = 1) and (ii) Correlation coefficient between X and Y.
- 30 (a) State and establish Renovsky formula.
 - (b) Explain important properties and applications of normal distribution.
- 31 (a) State Bienayme-Chebychev's inequality.
 - (b) State and prove Lindberg-Levy form of CU.

 $(2 \times 4 = 8 \text{ weightage})$