SECOND SEMESTER B.Sc. DEGREE EXAMINATION, APRIL/MAY 2013 (CCSS)

MM 2C 02-MATHEMATICS
Time : Three Hours
Maximum :30 Weightage
I. Objective type questions. Answer all questions, weightage 'A each :

1 Show that $\cosh 2 x=\cosh x \sinh ^{-} x$.
2 Investigate the convergence of $\int_{\mathrm{x}}^{1} d x$

3 Find $\lim _{n-3 .} \frac{\ln n^{2}}{n}$
4 Define the convergence of a sequence.
5 Find a formula for the nth term of the sequence $1,-4,9,-16,25, \ldots$
6 Define the alternating series test.
7 The least upper bound of the sequence-, $\frac{1}{2}, \frac{3}{4}, \ldots, n+1, \ldots$ is
8 Graph the set of points whose polar co-ordinates satisfy the conditions $r \quad 0$ and $\theta=\frac{\pi}{4}$
9 Show that the point $\left(n, \left.\frac{\pi}{2} \right\rvert\,\right.$ lies on the curve $r=2 \cos 20$.
10 Find $\frac{a t}{}$ at $(4,-5)$ if $f(x, y)=x^{2}+3 x y y-1$.
11 Find $\frac{\partial f}{}$ if $f(x, y)=y \sin . x y$.

12 If x, y and z are independent variables and $f(x, y, z)=x \sin (y+3 z)$ find $d z$
(12 x 1/4 $=3$ weightage)
II. Short answer type questions. Answer all nine questions, weightage 1 each :

13 Find the derivative of $y \quad \tanh \quad$ with respect to t.

14 Show that the series $\sum_{n=1}^{2}$ diverges.

15 Test the convergence of ${ }_{n=1}^{n_{-}+1} \quad n \quad$.

16 Examine the convergence of ${ }_{n=1}^{\infty}(2 n!n!$!

17 For what values of x does the power series $\sum_{n=1}^{\omega} \quad \begin{gathered}\mathrm{r}-1 \\ 2 n-1\end{gathered} \quad$ converges.
18 Find an equation for the circular cylinder $4 x^{2}+4 y^{2}=9$ in cylindrical co-ordinates.
19 Define the gradient of $f(x, y)$.
20 Find an equation for the tangent to the ellipse $\frac{x 2}{4}+y^{2}=2$ at $(-2,1)$.

21 Find $\frac{a z}{\partial x}$ if the equation $y z$ in $z=x+y$ defines z as a function of the two independent variables x and y and the partial derivatives exists.

$$
\text { (} 9 \times 1=9 \text { weightage) }
$$

III. Short essay questions. Answer any five questions, weightage 2 each

22 Compare $f \frac{d x}{x^{2}}$ and $\int_{1+x^{2}}^{d x}$ with the limit comparison test.

23 Does $\underset{n=1}{\mathbf{L}} \ln ^{3 / 2}$ converge ?
24 Prove that $\ln (1+\mathrm{x})=x-\frac{x^{2}}{2}+\frac{x^{-}}{3}-\frac{x}{4}+\ldots$
25 Find the area of the region in the plane enclosed by the cardioid $r=2(1+\cos 9)$.
26 Verify that $\mathrm{W}_{n y}=\mathrm{W}_{y n}$ if $\mathrm{W}=\mathrm{e} x+\mathrm{x}$ in $\mathrm{y}+\mathrm{y} \operatorname{In} x$

27 Find - when $r=1, s=1$ if $\mathbf{W}=(x+y+z)^{2}, x=r s, y=\cos (r+s), z=\sin (r+s)$.

28 Find the length of the asteroid $x=\cos t, y=\sin t, 0<t<2 f f$
 if $p>1$ and diverges if p

30 Find the Taylor series and the Taylor polynomial generated by $f(x)=e x$ at $\mathbf{x}=\mathbf{0}$.
31 Find the linearization, $\mathrm{L}(x, y)$ of $f(x, y)=e \cos y P_{o}(\mathbf{0}, \mathbf{0})$ and find an upper bound for IE |of the error in the approximation $f(x, y)$ $, y)$ over the rectangle R:

