SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2012 (CCSS)

Mathematics (Elective Course)
MM 6B 13 (E02)-LINEAR PROGRAMMING AND GAME THEORY
me:Three Hours
Maximum : 30 Weightage

Part I

Answer all questions.

1. Maximize $Z=x_{1}+\mathrm{x}_{2}^{2}$, subject to $\mathrm{x},-\mathrm{x}_{3}=3$ and $\mathrm{x}_{2} 2$ is a
(a) Linear Programming problem.
(b) Quadratic programming problem.
(c) Transportation problem.
(d) Assignment problem.
2. Define a convex set.
3. What is surplus variable?
4. Which of the following is not a convex set in R^{2} ?
(a) $\{(x, y) / x+2 y=3\}$.
(b) $\left\{(x, y) / x^{2}+y^{2} \leq 1\right\}$.
(c) $\{(x, y) / a<x<b\}$.
(d) $\left\{(x, y) / x^{2}+y^{2}=1\right\}$.
5. Are the vectors $\mathrm{a}=(1,2,3), \mathrm{b}=(-6,0,2)$ are Orthogonal ?
6. Which of the following sets form a basis of \mathbf{R}^{2} ?
(a) $\{(2,0)(3,0)\}$.
(b) $\{(0,-1)(0,1)\}$.
(c) $\{(\mathbf{2}, \mathbf{0})(0,2)\}$.
(d) $\{(0,0)(0,-2)\}$.
. Define support of a set in E^{\prime}
7. Find the convex null of the $\quad, y \in R / \lambda+1=3$.
8. Find a basic solution of the following system with x_{3} as a non basic variable $2 x_{1} \mathbf{x},+3 x_{3}=3$;

$$
+2 \times 2_{-\times 3}=4 .
$$

10. Define a saddle point of a two person zero sum game.
11. Find the dual of Maximize $Z=3 x_{1}+x_{2}, 2 x_{1}+3 x_{2} 5 ; x_{1}+x_{2} \geq 3, x_{1} O, x_{2} \geq 0$
12. Express $(-1,2)$ as a linear combination of $(2,0)$ and $(0,2)$.
(12 x 1/4 $=3$ weightage)

Part II

Answer all questions.
13. Find the convex null of the set $(1,2),(2,3)\}$.
14. Show that $\bar{a}=(1,2,1) ; b=(2,3,0) ; c=\left(1,2,2\right.$ are linearly independent in E^{3}.
15. Prove that every hyperplane in R^{n} is convex.
16. Find a basic solution of the system

$$
\begin{aligned}
& \mathrm{x}_{1}+2 \mathrm{x}_{2}-x_{3}+x_{4}=4 \\
& \mathrm{x}_{1}-\mathrm{x}_{2}+2 \mathrm{x}_{3}-\mathrm{x}_{4}=-2
\end{aligned}
$$

17. Transform the following into Standard form :

$$
\begin{array}{ll}
\text { Maximize } Z= & 2 \mathrm{x}_{1}+3 \mathrm{x}_{3} \\
\text { subject to } & x_{1}+\mathrm{x}_{2}<1 \\
& 3 \mathrm{x}_{1}+\mathrm{x}_{2} 4 \\
& \mathrm{xO} ; \mathrm{x}_{2}
\end{array}
$$

18. Convert the following into a maximization problem

$$
\begin{aligned}
& \text { Minimize } Z=4 \mathrm{x}_{1}+3 \mathrm{x}_{2} \\
& \text { subject to } \quad \mathrm{x}_{1}+2 \mathrm{x}_{2} 8 \\
& \\
& \\
& 3 x_{1}+2 \mathrm{x}_{2} \\
& \\
& \\
& \geq 0 ; \mathrm{x}_{2} \geq
\end{aligned}
$$

19. Obtain the dual of-Maximize $Z=x_{1}-x_{2}+3 x_{3}$, subject to $x_{1}+x_{2} x_{3} \leq 10 ; 2 x_{1}-x_{3} 2$, $2 x_{1}-2 x_{2}+3 x_{3} \sigma$.
20. Define a loop in a transportation problem.
21. Define maximin principle in a two person zero sum game.

Part III

Answer any five questions.
22. Draw the feasible space of the following in equations:
$\mathbf{x}_{1} \quad{ }^{2} \mathbf{x}_{2} \quad 7, \mathbf{x}_{1} \mathbf{x}_{2} \quad$ 4: $\mathbf{x}_{1}>0 ; \mathbf{x}_{2}>0$.
23. Show that $X=\left\{\left(x_{1}, x_{2}\right) / x_{1}-2 x,=2\right\}$ is a convex set in E.
24. Show that set of all feasible solutions of a system of equations $\mathbf{A X}=b$ is closed convex set.
25. Given the system:
$2 x_{1} \chi_{2}+2 x_{3}=10, x_{1}+4 x_{2}=18$ and $x_{1}, x_{2} \geq O$. Obtain a basic feasible solution starting from $(2,4,5)$.
26. Using north-west corner rule find an initial basic feasible solution of the transportation problem.

	D_{1}	D_{2}	D_{3}	10
Q	3	8	7	
Q	6	5	8	
	6	5	4	

27. Solve the following 2×2 game

$$
\text { Player A }\left[\begin{array}{ll}
4 & Z^{-} \\
1
\end{array}\right.
$$

28. Show that $(1,2,-1),(0,1,1)$ and $(1,1,1)$ generate the vector space \mathbf{R}^{3}.
($5 \times 2=10$ weightage)

Part IV

Answer any two questions.
29 Use Simplex method to solve:

$$
\begin{gathered}
\text { Minimize } Z=3 \mathrm{x}_{2}+2 \mathrm{x}_{3} \\
\text { subject to } \\
3 \mathrm{x}_{1}-x_{2}+2 ; \\
2 x_{1}+4 \mathrm{x}_{2} \\
4 \mathrm{x}_{1}+3 \mathrm{x}_{2}+8 \mathrm{x}_{3} \leq 10 \\
, \mathrm{x}_{2}, \mathrm{x}_{3} \mathrm{O}
\end{gathered}
$$

30. Solve the transportation problem :

	D_{1}	D_{2}	D_{3}	Availability	
S_{i}	5	1	8	12	
S_{2}	2	4	0	$\mathbf{1}$	4
S_{3}	3	6	7	4	

Requirement 91011

31. Solve the following game :

$$
\begin{array}{r}
1-32 \\
-44-2
\end{array}
$$

