25709

(Pages 4)

Name

••••

Reg. No.....

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2012

(CCSS)

Mathematics (Elective Course)

MM 6B 13 (E02)—LINEAR PROGRAMMING AND GAME THEORY

me: Three Hours

Maximum : 30 Weightage

Part I

Answer all questions.

1. Maximize $Z = x_1 + x_2$, subject to $x_1 - x_3 = 3$ and x_2 **2** is a —

- (a) Linear Programming problem.
- (b) Quadratic programming problem.
- (c) Transportation problem.
- (d) Assignment problem.

2. Define a convex set.

3. What is surplus variable ?

- 4. Which of the following is not a convex set in \mathbf{R}^2 ?
 - (a) $\{(x, y)/x + 2y = 3\}$. (b) $\{(x, y)/x^2 + y^2 \le 1\}$.
 - (c) $\{(x, y) | a < x < b\}$. (d) $\{(x, y) | x^2 + y^2 = 1\}$.
- 5. Are the vectors a = (1, 2, 3), b = (-6, 0, 2) are Orthogonal?
- 6. Which of the following sets form a basis of \mathbf{R}^2 ?
 - (a) $\{(2, 0), (3, 0)\}$. (b) $\{(0, -1), (0, 1)\}$.
 - (c) $\{(2, 0), (0, 2)\}$. (d) $\{(0, 0), (0, -2)\}$.
 - **Define support of a set in** $E^{'1}$
- 8. Find the convex null of the $y \in \mathbb{R} / x + 1 = 3^{1}$.
- 9. Find a basic solution of the following system with x_3 as a non basic variable $2x_1 \propto + 3x_3 = 3$; + $2x_2 = 4$.
- 10. Define a saddle point of a two person zero sum game.

- 11. Find the dual of Maximize $Z = 3x_1 + x_2$, $2x_1 + 3x_2 5$; $x_1 + x_2 \ge 3$, $x_1 O$, $x_2 \ge 0$
- 12. Express (-1, 2) as a linear combination of (2, 0) and (0, 2).

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Part II

Answer **all** questions.

- 13. Find the convex null of the set (1, 2), (2, 3).
- 14. Show that $\overline{a} = (1, 2, 1)$; b = (2, 3, 0); c = (1, 2, 2) are linearly independent in E³.
- 15. Prove that every hyperplane in \mathbb{R}^n is convex.
- 16. Find a basic solution of the system

 $x_1 + 2x_2 - x_3 + x_4 = 4$ $x_1 - x_2 + 2x_3 - x_4 = -2$

17. Transform the following into Standard form :

Maximize $Z = 2x_1 + 3x_3$ subject to $x_1 + x_2 < 1$ $3x_1 + x_2 < 4$ **x O**; x_2

18. Convert the following into a maximization problem

Minimize $Z = 4x_1 + 3x_2$ subject to $x_1 + 2x_2 \otimes 3x_1 + 2x_2$ $\ge 0; x_2 \ge$

- 19. Obtain the dual of <u>Maximize</u> $Z = x_1 x_2 + 3x_3$, subject to $x_1 + x_2 \times_3 \le 10$; $2x_1 x_3 \ge$, $2x_1 - 2x_2 + 3x_3 = 6$.
- 20. Define a loop in a transportation problem.
- 21. Define maximin principle in a two person zero sum game.

Part III

Answer any five questions.

22. Draw the feasible space of the following in equations:

 $\mathbf{x}_1 = \mathbf{x}_2 = 7, \mathbf{x}_1 = \mathbf{x}_2 = 4; \mathbf{x}_1 > 0; \mathbf{x}_2 > 0.$

- 23. Show that $X = \{(x_1, x_2) / x_1 2x_2 = 2\}$ is a convex set in E.
- 24. Show that set of all feasible solutions of a system of equations AX = b is closed convex set.
- 25. Given the system:

 $2x_1 \times_2 + 2x_3 = 10$, $x_1 + 4x_2 = 18$ and $x_1, x_2 \ge 0$. Obtain a basic feasible solution starting from (2, 4, 5).

26. Using north-west corner rule find an initial basic feasible solution of the transportation problem.

	D ₁	D ₂	D ₃	
Q_1	3	8	7	10
Q	6	5	8	5
2	6	5	4	

27. Solve the following 2 x 2 game

Player B
Player A
$$\begin{bmatrix} 4 & 2 \end{bmatrix}$$

28. Show that (1, 2, -1), (0, 1, 1) and (1, 1, 1) generate the vector space \mathbb{R}^3 .

 $(5 \ge 2 = 10 \text{ weightage})$

Part IV

Answer any two questions.

29 Use Simplex method to solve:

Minimize $Z = 3x_2 + 2x_3$ subject to $3x_1 - x_2 + 2$; $2x_1 + 4x_2 = 12$ $4x_1 + 3x_2 + 8x_3 \le 10$ $x_2, x_3 = 0$.

Turn over

30. Solve the transportation problem :

	$D_1 \mathbf{D}_2 \mathbf{D}_3$ Availability		
$\mathbf{S_i}$	5 1 8 12		
\mathbf{S}_2	24014		
S_3	3674		

Requirement 9 10 11

31. Solve the following game :

$$1 - 3 2$$

 $-4 4 - 2$

 $(4 \times 2 = 8 \text{ weightage})$