SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2014

 (U.G.-CCSS)Mathematics
MM 6B 10-COMPLEX ANALYSIS

What is the imaginary part of $z^{2}+5$?

What is the value of $\lim _{z \rightarrow \infty}\left(\frac{5 z+1}{z+4}\right.$,
.The real and imaginary parts of an analytic functions are \qquad functions.

$$
\left|e^{z}\right|=
$$

(a) e.
(b) e^{x}.
(c) e^{x}.
(d) e^{2}.

- \qquad
(a) $\mathbf{- 1}$.
(b) 1 .
(c) 0 .
(d) e.

6. Express $\sin \mathrm{x}$ in terms of $e^{i x}$
7. What is the parametric form of the circh ${ }_{\chi} I=2$?
8. Every bounded entire function is
9. The region of convergence of $1-z+z^{2}-z^{3}+\ldots$ is
10. What is the value of $\int_{|z|=2}\left(z^{2}+5\right) d z$
11. For the function $f(z)=\sin z, z=0$ is
(a) Removable singular point.
(b) Pole of order 1.
(c) Pole of order 2.
(d) Essential singular point.

5z
12. Identify the poles of z^{2}
($12 \times 1 / 4=3$ weightage)

Section B

Answer all nine questions.
13. Show that $f(z)$ does not exist at any point for $f(z)=z$.
14. If $f(z)$ and $\overline{\mathbf{f}(z)}$ are both analytic in a domain D, prove that $f(z)$ is a constant throughout D.
15. Find all values of z such that $e^{z}=-2$.
16. Find the principal value of (-
17. State Cauchy-Goursat theorem.
18. Deduce Cauchy's inequality from the extension of Cauchy's integral formula.
19. State Laurent's theorem.
20. Discuss the nature of singularity of $e^{1 / z}$ at $z=0$.
21. For the function $f(z) \stackrel{\sin z}{=}$ 4 determine the order of the pole at $z=0$ and the corresponding residue.
($9 \times 1=9$ weightage)

Section C

Answer any five questions.
22. Show that $u(x, y)=y^{3}-3 x^{2} y$ is a harmonic function and find a harmonic conjugate $v(x, y)$ of u.
23. If $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D, prove that the families of level curves $\mathbf{u}(\mathrm{x}, \mathrm{y})=c_{1}$, and $\mathrm{v}(\mathrm{x}, \mathrm{y})=\mathrm{c}_{2}$ are orthogonal.
24. Find all roots of the equation $\cosh z=\frac{1}{2}$.
25. Evaluate $I_{\left(z^{-}+4\right)^{2}}$ where C is the circle $|z-i|=2$.
26. State and prove fundamental theorem of algebra.
27. Expand e^{z} as a Taylor series about $z=-1$ and state the region of validity of the expansion.
28. State and prove Cauchy's residue theorem.
(5 $\times 2=10$ weightage)

Section D

Answer any two questions.
29. State and prove Cauchy's integral formula.
30. $\operatorname{Expand}_{(}$z 1) -3) as
(i) Maclaurin's series and
(ii) Laurent series in $0<\mid z-\quad 2$.
31. Using Cauchy's residue theorem evaluate :

$$
{ }_{0}^{2 n} \frac{d o}{1+a \sin 0}=\frac{}{-a^{2}} \quad \mathbf{l}<a<1 .
$$

