\qquad
SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2014 (U.G.-CCSS)

Mathematics
MM 6B 11—NUMERICAL METHODS

Time : Three Hours
I. Answer all twelve questions :-

1 Forward difference $A y=$

21 -
(a) V.
(b) δ.
(c)
(d) Δ.

3 Define averaging operator μ.
$4 \mathrm{~A}=\square=\delta \mathrm{E}^{1 / 2}$.
(a) $\nabla \mathrm{E}$.
(b) AE.
(c)
(d) 6 E .

5 Show that $\mathrm{e}^{\mathrm{x}} \left\lvert\, u_{0}+x \Delta u_{0}+\frac{x^{2}}{2!} \Delta^{2} u_{\mathrm{v}}+\ldots\right.$.

$$
1+x \mathrm{E}+\frac{\mathrm{x}^{2} \mathrm{E}^{2}}{2!}
$$

6 Write Sim son's $\frac{n}{8}$-Rule.
7 Define the characteristic polynomial of a square matrix A.
8 The shift operator E is defined as $\mathrm{E}_{y_{r}}=$ \qquad
$\begin{array}{lll}1 & 2 & \\ 2 & \end{array}$

10 Write Newton's forward difference interpolation formula.
$111+\frac{1}{4} \delta=$
(a) \mathbf{A}^{2}.
(b) $\quad \backslash 7^{2}$
(c) μ^{2}
(d) 6^{2}

12 Write Gauss backward formula.
(12 $\times 1 / 4=3$ weightage)
II. Answer all nine questions :-

13 Define central difference opertor 8 ?

14 Prove that $\left.\mathbf{e}^{\mathrm{x}}\right|^{\prime} u_{u}+x \Delta u_{u}+\mathrm{x}^{2} \underset{A}{\gtrless} u_{u}+\mid$

$$
=\mathrm{U} 0+\frac{x^{\wedge}}{2!} \mathrm{U} 2+\ldots .
$$

15 Write Gauss forward formula.
16 The function $y=\sin x$ is tabulated below :

$$
\begin{array}{ccc}
& 0 & 4 \\
y=\sin x & 0 & 0.70711
\end{array}
$$

Using Lagrange's interpolation formula find the value of $\sin (\mathbf{V}$.

17 Write the Trapezoidal rule.
18 Define the eigen value of a square matrix.
19 Find the integers between which the real root of $x e^{x}-1=0$ lies.

20 Given $\begin{aligned} & d x \\ & d x\end{aligned}=y-\quad$ where $y(0)=2$. Find $y(0.1)$ correct to four decimal places by Runge-Kutta second order formula.

21 Define the spectral radius of a square matrix.
III. Answer any five questions from seven

22 Using Newton's general interpolation formula with divided differences find $f(x)$ as a polynomial in x. Given

x	-1	$\mathbf{0}$	3	6	7
$f(x)$		39	$\mathbf{8 2 2}$	$\mathbf{1 6 1 1}$	

23 Using Trapezoidal rule evaluate $I=\int_{0} 1+x^{-} d x _$correct to three decimal places. Take $h=0.5$.

24 Determine the largest eigen value and the corresponding eigen vector of the matrix

$$
A=\begin{array}{lll}
1 & 0 & 1 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}
$$

25 Given the differential equation $\begin{aligned} & d y \\ & d x\end{aligned}=\begin{gathered}x- \\ y^{2}+1\end{gathered}$ with the initial condition $y=0$ when $x=0$. Use
Picard's method to obtain y for $x=0.25$.

26 Using Lagrange's interpolation formula, find the form of the function $\mathbf{y}(\mathbf{x})$ from the following table

x	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{4}$
\mathbf{y}	$-\mathbf{1 2}$	$\mathbf{0}$	$\mathbf{1 2}$	$\mathbf{2 4}$

27 Find the following table find the value of $e^{\bullet \bullet \pi}$ using Gauss' forward formula.

x	1	1.05	1.10	1.15	1.20	1.25	1.30
$e x$	2.7183	2.8577	3.0042	3.1582	3.3201	3.4903	3.6693

28 Use the Newton-Raphson method to find a root of the equation $x^{3}-2 x-5=0$.
($5 \times 2=10$ weightage)
IV. Answer two questions from three

29 By using Newton's forward difference interpolation formula find the cubic polynomial whic ${ }^{\text {l }}$ takes the following values

$$
y(1)=24, y(3)=120, y(5)=336, y(7)=720
$$

30 Solve the equation $2 x+3 y+z=9, x+2 y+3 z=6,3 x+y+2 z+8$ by LV decomposition.
31 Using Modified Euler's method determine the value of y when $x=0.1$ given th
($2 \times 4=8$ weightag

