SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2014

(U.G.-CCSS)

Mathematics
MM 6B 12—NUMBER THEORY AND LINEAR. ALGEBRA
Time Three Hours
Maximum : 30 Weightage
I. Answer all twelve questions
$1 a(5)=$
2 The value of $\sum_{n=1}^{6} \sigma(n)=$ \qquad
3 If p is a prime and $k>0$ then $\phi\left(p^{\circ}=\right.$
4 If a, b, c are integers and $\operatorname{gcd}(a, b, c)=1$ then $\operatorname{gcd}(a, c)=$

5 If A is a non-singular matrix of order n then the rank of A is \qquad

6 The system $A X=0$ in n unknows has a trivial solution if :
(a) $\rho($ A $)>n$.
(b) $\mathbf{p}(\mathbf{A})=\mathrm{n}$.
(c) $\rho($ A $)<n$.
(d) None of these.

7 State Cayley-Hamilton theorem.

8 Define Nullity of a matrix.

9 If A is a matrix of order $m x n$ and R is a non-singular matrix of order m then

10 If N is a positive integer then $\sum_{\mathrm{n}=1}^{\mathrm{N}} \sigma(n)_{\mathrm{n}=1}^{\mathrm{N}}$
11 State Chinese Remainder theorem.

12 If $c a \quad c b(\bmod \mathbf{n})$ and $\operatorname{gcd}(c, n)=1$ then a $\quad(\bmod \mathbf{n})$.
II. Answer all nine questions :

13 When two integers a and b are said to be relatively prime?
14 Find / cm $(306,657)$.
15 State Fermat's theorem.
16 Prove that the function μ is a multiplicative function.
17 Show that no skew-symmetric matrix can be of rank 1.
18 If $A=\left[\begin{array}{ll}2 & 0 \\ u & \gamma\end{array}\right]$ find $p(A)$.
19 Define Null space of a matrix.
20 Find the remainder when $1!+2!+3!+\quad+99!+100!$ is divided by 12 .
21 Prove that if $\left.\operatorname{gcd}(a, b)=d \operatorname{th}_{\mathbf{e n}} \operatorname{gcd} \begin{array}{ll}a & \frac{b}{d}\end{array}\right)=1$.

$$
\text { (} 9 \times 1=9 \text { weightage) }
$$

III. Answer any five questions from seven

22 Prove that the fourth power of any integer is of the form $5 k$ or $5 k+1$.
23 Let a and b be integers, not both zero prove that a and b are relatively prime if and only if there exist integers x and y such that $1=a x+b y$.

24 Prove that for positive integers a and $b \operatorname{gcd}(a, b) l c m(a, b)=a b$.
25 Show that 8 divides $7^{2 n}+1+1$.

26 Using Wilson's theorem prove that $18!+10(\bmod 23)$.

27 Find non-singular matrices P and Q such that $P A Q$ is in the normal form given

$$
\left.A=\begin{array}{ccc}
1 & 1 \\
1 & 2 & 3 \\
-1 & 1
\end{array}\right)
$$

28 Show that the characteristic roots of an idempotent matrix are either zero or unity.

$$
\text { (} 5 \times 2=10 \text { weightage) }
$$

Iv. Answer two questions from three

29 State and prove Chinese Remainder theorem.
30 State and prove Fundamental theorem of Arithmetic.

31 Using Cayley-Hamilton theorem show that $A^{3}-6 A^{2}+11 A-61=0$ where $\left.=\begin{array}{rrr}1 & 1 & 2 \\ 0 & 2 & 2 \\ { }_{L}-1 & 1 & 3\end{array} \right\rvert\,$ and hence find A^{-1}.

