\qquad

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH/APRIL 2015

(U.G.-CCSS)

Elective Course-Mathematics
MM 6B 13 (E02)-LINEAR PROGRAMMING AND GAME THEORY
(2010 Admission onwards)
Time : Three Hours
Maximum : 30 Weightage

Section A

> Answer all questions. Each question carries weight $1 / 4$.

1. Give the canonical form of a maximization LPP.
2. Is " Maximize $z=2 x_{1}+3 x_{2}$

$$
\begin{gathered}
\text { subject to } x_{1}+x_{2}=5 \\
5 x_{1}-2 x_{2} 3 \\
x_{1}, x_{2} \mathbf{O}
\end{gathered}
$$

in the standard form.
3. State True or False : The singleton set is convex.
4. What is the maximum number of basic solutions in a system of ' m ' linear non-homogenous equations with ' n ' variables?
5. Define a surplus variable.
6. State the optimality criterion for a basic feasible solution of a Linear Programming Problem.
7. If the primal problem has an unbounded objective function, then the dual has no feasible solution-True or False?

Define "penalty" in Cham's method.
What is the maximum number of basic variables in a balanced Transportation problem with ' m ' rows and ' n ' columns?

Consider a 4×4 Transportation Problem. Does the set of cells $\{(1,1),(1,2),(3,2),(3,4),(4,4),(4,1)\}$ form a loop in it.
State True or False : An Assignment Problem is a special types of Transportation Problem. non-degenerate basic feasible solution of a Transportation Problem with ' m ' rows and ' n ' columns Las how many zeros.
($12 \times 1 / 4=3$ weightage)

Section B

Answer all questions.
Each question carries weight 1.
13. Reduce to the standard form :

Minimize $z=x_{1}+x_{2}$

$$
\begin{array}{lcl}
\text { subject to } 2 \mathrm{x} 1 & \mathbf{x} 2 & 4 \\
3 \mathrm{x}_{1}+5 \mathrm{x}_{2} & \mathbf{1 O} \\
\mathrm{x}_{1} & 0, \mathbf{x} \mathbf{2} & \mathbf{0}
\end{array}
$$

14. Define a hyperplane in the Euclidean plane.
15. State a necessary and sufficient condition for a set S to be convex in \mathbf{E}^{11}.
16. State the Fundamental Theorem of linear programming.
17. Find the dual of

Minimize $z=2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+4 \mathrm{x}_{3}$

$$
\begin{gathered}
\text { subject to } 2 x_{1}+3 x_{2}+5 x_{3} \geq 2 \\
3 x_{1}+x_{2}+7 x_{3}=3 \\
+4 x_{2}+6 x_{3}
\end{gathered}
$$

$$
\mathrm{x}_{1}, \mathrm{x}_{2} \quad \mathrm{x}_{3} \text { unrestricted. }
$$

18. Name the method used to solve an LPP when surplus variables arise. Also define 'penalty'.
19. Give the matrix notation of a transportation problem.
20. Find an initial basic feasible solution by NWCR :

	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{3}}$	$\mathbf{D}_{\mathbf{4}}$	Supply
O_{1}	11	13	17	14	250
$\mathbf{O}_{\mathbf{2}}$	16	18	14	10	300
O_{3}	21	24	13	10	400
Demand	200	225	275	250	

21. Show that a balanced Transportation problem possesses a finite feasible solution and an optimal solution always.

Section C

Answer any five questions.
Each question carries weight 2.
22. Solve graphically :

Maximize $z=x_{i}+x_{2}$

$$
\begin{array}{r}
\text { subject to } 2 \mathbf{x}_{1}+3 x_{2} \boldsymbol{G} \\
-x 2 \quad \mathbf{1} \\
x 1, \times 20 .
\end{array}
$$

23. Show that the set of all feasible solutions of a system of equations $\mathbf{A}_{\mathbf{x}}=b$ is a closed convex set.
24. Solve by simplex method :

Maximize $\mathrm{z}=\mathbf{x}_{\mathbf{1}}+\mathbf{5} \mathbf{x}_{\mathbf{2}}$
subject to $\begin{gathered}\quad+10 \mathrm{x}_{2} \mathbf{2 O} \\ x_{1}<2 \\ \mathrm{x}_{1}, \mathrm{x}_{2}\end{gathered} \quad 0 \mathrm{l}$
25. Solve

Maximize $z=3 x_{1}+2 x_{L}+3 x_{3}$
subject to $2 \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3} 2$
$3 \mathrm{x}_{1}+4 \mathrm{x}_{2}+2 \mathrm{x}_{3} \geq 8$
$x_{1}, \mathrm{x}_{2}, x_{3}$
26. Show that the dual of the dual is the primal itself.
27. Find an initial basic feasible solution by VAM :

28. Solve the following AP to minimize cost :

	I	II	III	IV	V
A	9	8	7	6	4
B	5	7	5	6	8
C	8	7	6	3	5
D	8	5	4	9	3
E	6	7	6	8	5

Section C

Answer any two questions.
Each question carries weight 4.
29. Formulate as an LPP and solve : Two types of cloth X and Y are made by a company. Each go through processes A and B. Time in hours per unit and total time available are :

		X	Y	Total hours
Process A	.	3	4	24
Process B	..	9	4	36

Profit per unit of X and Y are Rs. 5 and Rs. 6 respectively how many units of X and Y sho produced to maximize profit?
30. Use Principle of Duality to solve :

Maximize $z=3 \mathrm{x}_{1}+2 \mathrm{x}_{2}$
subject to $\mathrm{x}_{1}+\mathrm{x}_{2} \quad \mathbf{1}$

- + X2 7
- $+2 \mathrm{x}_{2} \mathbf{1 0}$

X2 3
Xi, X2, X3, X4 0 .
31. Solve the following minimization Transportation Problem :

			${ }^{2} \mathrm{D}_{3}$ Supply	
$\mathrm{O}_{\mathbf{1}}$	2	7		5
O_{2}	3	3	$\mathbf{1}$	8
$\mathbf{O}_{\mathbf{3}}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{7}$	7
O_{4}	1	6	2	14

at BSNL un enable yo .)
Phone $\mathbf{S \epsilon}$ an offer where yc
Stay in to through aling your 0 - Stay in

