Reg. No.

SIXTH SEMESTER U.G. DEGREE EXAMINATION, MARCH 2013 (CCSS)

Mathematics
MM 6B 09—REAL ANALYSIS

Time : Three Hours
Maximum : 30 Weightage

Part A

Answer all twelve questions :

1 State True or False ' $f(x)=\frac{1}{}$ has neither an absolute maximum nor an absolute -minimum on the set $(0,00) "$.

2 Deec $4 \sin x=x$ has a positive solution in $\left(\frac{\pi}{2}, \pi\right.$.
3 Give an example to a uniformly continuous function on $[0, b] ; b$
4 Find the norm of the partition $p=(0,2,3,4)$.
5 Give an example to function which is Riemann integrable in [a,b].
6 State True or False "Every continuous function is integrable".

7 Define point-wise convergence of a sequence of function $\left\{f_{t 1}(\right.$

8 Show that $f n(x) \frac{1}{x+n}$ in uniformly convergent in $[0, b] ; b>$

9 Define uniform norm of a bounded function on $\mathbf{A c} \mathbf{R}$ and $\phi: \mathbf{A} \rightarrow \mathbf{R}$
10 Define an improper integral.
11 Define Beta function.

12 If \mathbf{n} is a positive integer value of $n+1$ is \qquad

Part B

Answer all nine questions.
13 Define absolute maximum and absolute minimum of $f \mathrm{~A} \quad \mathrm{R} ; \mathrm{A} \subseteq \mathrm{R}$.
14 State maximum-minimum theorem.

15 Show that the function $f(\mathrm{x})=\begin{aligned} & 0 \text {, when } \mathrm{x} \text { is rational } \\ & 1 \text {, when } \mathrm{x} \text { is irrational }\end{aligned}$ is not integrable on any interva

16 If $f(\mathrm{x})<g(\mathrm{x}) \mathrm{V} \in[a, b]$, then show that $\mathrm{g} d x$
$a \quad a$

17 Use fundamental theorem of calculus to evaluate $\int_{a} x \mathrm{x}$.

18 Show that $G=x^{\prime \prime}(1-x)$ for $\mathrm{x} t \mathrm{~A}=[0,1]$ converges uniformly to $g(x)=0$.

19 Show that $1+\mathrm{x}+\frac{x_{2}}{2!}+\frac{x_{3}}{3!}+\ldots$ is uniformly convergent in $\left[\begin{array}{ll}-1 & 1\end{array}\right]$.

$$
{ }^{\infty} d x
$$

20 Examine the convergence o

21 Express $\int^{1} \frac{\mathrm{x}^{2}}{-\mathrm{x}^{5}} d x$ as a Beta function.
(9 $\times 1=9$ weightage)

Part C

Answer any five questions from 7.
22 State and prove Intermediate value theorem.
23 Define a Lipschitz function. Also prove that a Lipschitz function $f: \mathrm{A} \rightarrow \mathrm{R}$ is uniformly continuous on A.

24 Show that $f(n)=x^{2} \quad$ Riemann integrable on $[0, \mathbf{k}]$.

- 25 If $f:[a, b] \rightarrow \mathbf{R}$ is monotonic on [al)] then prove that $f E \mathbf{R}[a, b$.

26 State and prove Weierstrass M-test.

27 If $(x) \mid d x$ converges, show that $\int_{a}^{\infty} f(x) d x$ converges.
28 Using Beta functions prove that :

$$
\frac{x^{2}}{-n^{4}} d x^{\infty} \quad \frac{d x}{\sqrt{1}+n^{4}}=4 \sqrt{2} .
$$

($5 \times 2=10$ weightage)
Part D
Answer any two from four questions.
29 (a) Let $\mathbf{I}=[\mathrm{a}, \mathrm{b}]$ be a closed bounded interval and let $f: I \rightarrow \mathbf{R}$ be continuous on \mathbf{I}. Prove that f is bounded on \mathbf{I}.
(b) Define a step function and give an example.

30 Prove that if I is Riemann integrable on $[\mathrm{a}, \mathrm{b} 1$ then it is bounded on $[\mathrm{a}, b]$.
31 (a) Test for uniform convergence $\sum^{\infty} \frac{\sin n x}{{ }_{n} p}$ for $p>1$.
(b) Prove that $\int_{0}^{-a x} e^{-a x} \quad d x \quad$ where $\mathrm{a}>0, \mathrm{n}>0$.

