SIXTH SEMESTER U.G. DEGREE EXAMINATION, MARCH 2013

(CCSS)

Mathematics

MM 6B 09-REAL ANALYSIS

Time : Three Hours

Maximum: 30 Weightage

Part A

Answer all *twelve* questions :

1 State True or False " $f(x) = \frac{1}{x}$ has neither an absolute maximum nor an absolute -minimum on the set (0, 00)".

2 Does $4 \sin x = x$ has a positive solution in $\left(\frac{\pi}{2}, \pi\right)$.

3 Give an example to a uniformly continuous function on [0, b]; b

4 Find the norm of the partition p = (0, 2, 3, 4).

5 Give an example to function which is Riemann integrable in [a, b].

6 State True or False "Every continuous function is integrable".

7 Define point-wise convergence of a sequence of function $\{f_{\mu}($

8 Show that $f_n(x) = \frac{1}{x + n}$ in uniformly convergent in [0, b]; b > b

- 9 Define uniform norm of a bounded function on A c R and $\phi : A \rightarrow R$
- 10 Define an improper integral.

11 Define Beta function.

12 If n is a positive integer value of n + 1 is _____

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Turn over

Part B

Answer all **nine** questions.

13 Define absolute maximum and absolute minimum of $f \in \mathbf{R}$; $\mathbf{A} \subseteq \mathbf{R}$.

14 State maximum—minimum theorem.

15 Show that the function $f(\mathbf{x}) = \begin{bmatrix} 0, \text{ when } \mathbf{x} \text{ is rational} \\ 1, \text{ when } \mathbf{x} \text{ is irrational} \end{bmatrix}$ is not integrable on any interva

16 If $f(\mathbf{x}) \leq g(\mathbf{x}) \forall \mathbf{x} \in [a, b]$, then show that g dx.

17 Use fundamental theorem of calculus to evaluate $\int_{a}^{x} x$.

18 Show that G = x'' (1-x) for x t A = [0, 1] converges uniformly to g(x) = 0.

19 Show that $1 + x + \frac{x_2}{2!} + \frac{x_3}{3!} + \dots$ is uniformly convergent in [-1 1].

20 Examine the convergence o $\int_{-\infty}^{\infty} dx$

21 Express $\int_{-x}^{1} \frac{x^2}{-x} dx$ as a Beta function.

 $(9 \ge 1 = 9 \text{ weightage})$

Part C

Answer any **five** questions from 7.

- 22 State and prove Intermediate value theorem.
- 23 Define a Lipschitz function. Also prove that a Lipschitz function $f: A \rightarrow R$ is uniformly continuous on A.

24 Show that $f(n) = x^2$ Riemann integrable on [0, k].

• 25 If $f:[a, b] \rightarrow \mathbb{R}$ is monotonic on [al)] then prove that $f \in \mathbb{R}$ [a, b.

26 State and prove Weierstrass M-test.

27 If (x) dx converges, show that $\int_{a}^{\infty} f(x) dx$ converges.

28 Using Beta functions prove that :

$$\frac{x^{2}}{-n^{4}} dx \sim \frac{dx}{\sqrt{1+n^{4}}} = \frac{1}{4\sqrt{2}}$$

 $(5 \ge 2 = 10 \text{ weightage})$

Part D

Answer any two from four questions.

29 (a) Let I = [a, b] be a closed bounded interval and let $f:I \rightarrow R$ be continuous on I. Prove that *f is* bounded on I.

(b) Define a step function and give an example.

30 Prove that if I is Riemann integrable on [a, b] then it is bounded on [a, b].

31 (a) Test for uniform convergence $\sum_{n=1}^{\infty} \frac{\sin nx}{np}$ for p > 1.

(b) Prove that
$$\int_{0}^{e^{-ax}} x dx - u$$
 where $a > 0, n > 0$.

 $(2 \times 4 = 8 \text{ weightage})$