SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2013 (CCSS)

Mathematics

MM 6B 13 (E02)-LINEAR PROGRAMMING

1e: Three Hours

Maximum : 30 Weightage

Part I

Answer all questions.

1. Define a slack variable.
2. Define a convex set in
3. State True or False :

The union of two convex sets is convex.
4. Define non-degenerate basic solution of the system $A X=B$.
5. What is the optimality criterion for the basic feasible solution of a maximization L.P.P.?
6. Define artificial variable.
7. The primal has 5 decision variables and 3 constraints. Then its dual has \qquad decision variables and \qquad constraints.
8. Dual of the dual is the
9. Define a loop in a Transportation Problem (TP).
10. State True or False :

A balanced TP always possesses a finite feasible solution and an optimal solution.
11. The number of zeros in a non-degenerate basic feasible solution of a balanced Transportation Problem with 4 sources and 5 destinations is \qquad
12. The decision variables *in an Assignment problem are
(a) 1 only.
(b) 0 only.
(c) Either 1 or 0 .
(d) None of these.

Part II

Answer any nine questions.
13. Write in standard form :

Maximize $z=3 \mathbf{x}_{1}-\mathbf{x}_{2}$
subject to

$$
\begin{aligned}
x 1-2 \mathbf{x}_{2} & \leq-3 \\
4 \mathbf{x}_{1}+\mathbf{x}_{2} & <4 \\
\mathbf{x}_{\mathbf{i}}, \mathrm{X} \mathbf{X} & \geq 0 .
\end{aligned}
$$

14. Show that $k=\left\{(x, y) \mathrm{E} R 2 ; \mathrm{x}^{2}+\mathrm{y}^{2}<9\right\}$ is convex.
15. Show that every hyperplane in \mathbb{R}^{n} is convex.
16. Show that a set ' 5 ' is convex in E^{n} implies that every convex combination of points in $S 1$ in S.
17. Show that an optimal solution of

Minimize $z=c x$
subject to Ax sb, $\boldsymbol{x} \geq 0$ is also an optimal solution of
Maximize $z^{\prime}=-c x$,

$$
A x \leq b \quad x \geq 0 .
$$

18. Find the dual of :

Minimize $\mathrm{z}=\mathbf{4} \mathbf{x}_{\mathbf{1}}-\mathrm{x}_{\mathbf{2}}$
subject to

$$
\begin{array}{r}
x l+\mathrm{x}_{2} \mathbf{5}_{-} 4 \\
\mathbf{2 x}_{1}-\mathrm{x}_{2} \\
\mathrm{x}_{1}
\end{array}
$$

x_{2} unrestricted.
19. State the Fundamental Theorem of Linear Programming.
20. Find an IBFS by NWCR :

	A	B	C	D	
I	$\mathbf{2 1}$	$\mathbf{1 6}$	$\mathbf{2 5}$	$\mathbf{1 3}$	11
II	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 4}$	23	13
III	$\mathbf{3 2}$	$\mathbf{2 7}$	$\mathbf{1 8}$	$\mathbf{4 1}$	19
	$\mathbf{6}$	$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 5}$	

21. Find an IBFS to the above problem by the matrix minimum method.
22. Test optimality of the Basic Feasible Solution $\mathrm{x}_{12}=30, \mathrm{x}_{21}=10, \mathrm{x}_{22}=10, \mathrm{x}_{23}=30$, $\mathrm{x}_{31}=10, \mathrm{x}_{33}=10$ for the Transportation Problem given below :

ABCD	
I	213430
II	321450
III	523820
	20403010

23. Give the Mathematical Form of the Assignment Problem.
24. What is a restrictive Assignment Problem and how is it tackled?
($9 \times 1=9$ weightage)

Part III

Answer any five questions.
25. State and prove a necessary and sufficient condition for a set S in E to be convex.
26. Show that the basic feasible solutions of Ax b are the extreme points.
27. Explain in simple steps the computational procedure of the simplex method.
28. Solve : Maximize $z=x_{1}+5 \mathbf{x}_{2}$
subject to

$$
\begin{array}{r}
x_{1}+10 x_{\mathrm{z}} 2 \mathrm{O} \\
2 \\
\mathrm{x}_{1}, \mathrm{x} 2 \geq 0 .
\end{array}
$$

29. Solve Maximize $z=2 x_{1}-3 \mathbf{x}_{2}$
subject to

$$
\begin{array}{r}
-x_{1}+x_{2}-2 \\
5 x_{1}+4 x_{2} 46 \\
7 x_{1}+2 x_{2} \$ 2 \\
x x_{2}, x_{2} O .
\end{array}
$$

30. Find an IBFS by VAM and test for optimality :

> A B C
> 10988
> 107107
> 11979
> 1214104
> 10108
31. Solve the following minimization Assignment Problem

	1	2	3	4	5
A	8	4	2	6	1
B	$\mathbf{0}$	9	5	5	4
C	3	8	9	2	6
D	4	3	1	0	3
E	9	5	8	9	5

32. Prove that in a balanced TP, there are at most $m \mathbf{n - 1}$ basic variables (m - no: of sour n-no : of destinations).
($5 \times 2=10$ weights

Part IV

Answer both questions.
33. Solve the following Transportation Problem to obtain the optimal solution :

	A	B	C	D	
I	6	1	9	3	70
II	1	1	5	2	8

34. Solve the following maximization Assignment Problem :

	1	2	3	4	5	
A	9	3	4	2	1	0
B	1	2	10	8	1	1

($2 \times 4=8$ weights

