(CCSS)

Mathematics

MM 6B 13 (E02)—LINEAR PROGRAMMING

ie: Three Hours

Maximum: 30 Weightage

Part I

Answer all questions.

- 1. Define a slack variable.
- 2. Define a convex set in
- 3. State True or False :

The union of two convex sets is convex.

- 4. Define non-degenerate basic solution of the system AX = B.
- 5. What is the optimality criterion for the basic feasible solution of a maximization L.P.P.?
- 6. Define artificial variable.
- 7. The primal has 5 decision variables and 3 constraints. Then its dual has ______ decision variables and ______ constraints.
- 8. Dual of the dual is the _____
- 9. Define a loop in a Transportation Problem (TP).
- 10. State True or False :

A balanced TP always possesses a finite feasible solution and an optimal solution.

- 11. The number of zeros in a non-degenerate basic feasible solution of a balanced Transportation Problem with 4 sources and 5 destinations is _____
- 12. The decision variables *in an Assignment problem are
 - (a) 1 only.
 - (b) 0 only.
 - (c) Either 1 or 0.
 - (d) None of these.

(12 x d = 3 weightage)

Turn over

Part II

Answer any nine questions.

13. Write in standard form :

Maximize $z = 3x_1 - x_2$ subject to $x_1 - 2x_2 \le -3$ $4x_1 + x_2 < 4$ $x_i, X_2 \ge 0.$

14. Show that $k = \{(x, y) \in \mathbb{R}^2 ; x^2 + y^2 < 9\}$ is convex.

15. Show that every hyperplane in \mathbb{R}^n is convex.

- 16. Show that a set '5' is convex in Eⁿ implies that every convex combination of points in S 1 in S.
- 17. Show that an optimal solution of

Minimize z = cx

subject to Ax s *b*, $x \ge 0$ is also an optimal solution of

Maximize z' = -cx,

 $Ax \leq b \ x \geq 0$.

18. Find the dual of :

Minimize $z = 4x_1 - x_2$ subject to

$$\begin{array}{c}
 x_{1} + x_{2} 5_{-} 4 \\
 2x_{1} - x_{2} & \mathbf{3} \\
 & x_{1} & \mathbf{0}
 \end{array}$$

x₂ unrestricted.

- 19. State the Fundamental Theorem of Linear Programming.
- 20. Find an IBFS by NWCR :

- 21. Find an IBFS to the above problem by the matrix minimum method.
- 22. Test optimality of the Basic Feasible Solution $x_{12} = 30$, $x_{21} = 10$, $x_{22} = 10$, $x_{23} = 30$,

 $x_{31} = 10$, $x_{33} = 10$ for the Transportation Problem given below :

ABC D I 2 1 3 4 30 II 3 2 1 4 50 III 5 2 3 8 20 20 40 30 10

23. Give the Mathematical Form of the Assignment Problem.

24. What is a restrictive Assignment Problem and how is it tackled ?

 $(9 \times 1 = 9 \text{ weightage})$

Part III

Answer any five questions.

25. State and prove a necessary and sufficient condition for a set S in E to be convex.

26. Show that the basic feasible solutions of Ax *b* are the extreme points.

27. Explain in simple steps the computational procedure of the simplex method.

28. Solve : Maximize $z = x_1 \pm 5x_2$

subject to

$$x_1 + 10x_2 20$$

$$x_1, x2 \ge 0.$$

29. Solve Maximize $\chi = 2x_7 - 3x_2$

subject to

$$-x_1 + x_2 - 2$$

 $5x_1 + 4x_2 - 46$
 $7x_1 + 2x_2 - 22$
 $xi, x_2 - 0$

30. Find an IBFS by VAM and test for optimality :

31. Solve the following minimization Assignment Problem

	1	2	3	4	5
A	8	4	2	6	1
В	8 0 3	9	5	5	4
С	3	8	9	2	6
D	4 9	3	1	0	3
E	9	5	8	9	5

32. Prove that in a balanced TP, there are at most m n -1 basic variables (m - no: of souri n - no: of destinations).

 $(5 \times 2 = 10 \text{ weights})$

Part IV

Answer both questions.

33. Solve the following Transportation Problem to obtain the optimal solution :

	ABC D
Ι	6 1 9 3 70
Π	11 5 2 8 55
III	10 12 4 7 90
	85 35 50 45

34. Solve the following maximization Assignment Problem :

	12345
A	934210
В	12 10 8 11 9
С	112908
D	801037
	1 2 3 4 5 9 3 4 2 10 12 10 8 11 9 11 2 9 0 8 8 0 10 3 7 7 5 6 2 9

(2 x 4 = 8 weights