SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH/APRIL 2015 (U.G.-CCSS)

Core Course-Mathematics
 MM 6B 10-COMPLEX ANALYSIS

Time . Three Hours
Maximum : 30 Weightage

Answer all questions.

1. Define a harmonic function.
2. $\operatorname{Sin}(i y)=$ \qquad
3. Given $f(z)-\frac{z^{-}(z-1)(z+1)}{(z+2)^{2} \cdot(z+6)}$ Write the order of the zero $z=1$.
4. State Cauchy's residue theorem.
5. $\operatorname{Cosh}^{2} ₹-\sin \mathrm{h}^{2} ₹=$ \qquad
6. Define isolated singularity.
7. If $e^{z}=\mathrm{e} \quad y$ then $\arg \left(e^{z}\right)$
8. ${ }_{c} z^{2} d z=\square$ where c is the circle ${ }_{1} z^{1}=2$.
9. Prove that $\mathbf{u}=\mathbf{x}^{2}-y^{2}$ is harmonic.
10. State Liouville's theorem.
11. Verify Cauchy-Riemann equation for the function $f(z)=(3 x+y)=i(3 y \quad x)$.
12. Define Pole.

Answer all nine questions.
13. Find the harmonic conjugate of $u=x^{4} \quad 6 x^{2} y^{2}+y^{4}$.
14. Prove that $f^{\prime}(z)$ does not exist at any point if $f(z)=z-$
15. Prove that $I(z)=^{Z}$ does not have a limit when $z \rightarrow 0$.
16. Evaluate $\int 5 d_{z}$ where c is $I z I=1$.
17. Give an example of removable singularity.
18. Evaluate the residue at the pole $z=1$ of $\mathbf{f}^{(\alpha)}=\begin{gathered}z+1 \\ z^{2}(z-1)\end{gathered}$
19. Determine the order of zero of the function $z\left(e^{-1}\right.$ at $z=0$.
20. Find the principal value of $(-i)^{i}$.
21. Prove that $\exp (4)(\underline{1+i})$.

Answer any five questions.
22. Find an analytic function $f(z)=u+i v$ given $u=\sin x \cos b y+2 \cos x \sin b y+x^{2}-{ }^{2}+4 x y$.
23. Prove that $\log \quad i)=\frac{1}{2} \log 2-i \frac{-}{4}$
24. State and prove Cauchy's Integral formula.
25. Using Taylor's series prove that
26. Using Cauchy's residue theorem evaluate :

$$
\underset{z}{z+1}=d z \text { where } \mathbf{c} \text { is } \mid z I=1
$$

27. Prove that differentiable functions are continuous.
28. Let $f(z)$ be an analytic function such that $\operatorname{I} f(z)$ I $\mathbf{A}|z|$ for every z, where A is constant. Prove that $f(z)=\mathrm{a}, z$ where a , is a complex constant.

$$
\text { (} 5 \times 2=10 \text { weightage) }
$$

Answer any two questions.
29. Obtain Laurent series expansion of $\left(\begin{array}{c}1 \\ (z-1)(z-2)\end{array}\right.$ in
30. Prove that $1(z)=1 \stackrel{(\bar{z})^{2}}{z=z}$ is not
analytic at $z=$ O. But Cauchy-Riemann equations are satisfied at that point.
31. Evaluate $\int_{0}^{c_{0}} \frac{x^{2}}{\left(x^{2}+1\right)}=d x$

