SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH/APRIL 2015

(U.G.-CCSS)

Core Course-Mathematics
MM 6B 09—REAL ANALYSIS
Time : Three Hours

Part A

Answer all questions.

1. State Maximum Minimum theorem.
2. Give an example of a uniform continuous function.
3. Define norm of a partition.
4. When is a function $f:[a, b] \mathbf{R}$ is Riemann integrable?
5. Define primitive of f.
6. If $\mathbf{J}=\mathbf{J}=[c, d] \subset[a, b]$ and $\varphi_{j}(x)=\begin{gathered}1, x \in \mathbf{J} \\ x \in[a, b]-J^{.} . \text {Find } \varphi_{j}\end{gathered}$?
7. Show that $-=0, V x \in R$.
8. Evaluate lira $\frac{n x}{1+(n x)^{2}}$
$1+(n x)^{n}$
9. Find the radius of convergence of $\sum x$.
10. Define improper integral.
11. State True or false. 'If f is continuous on $[1,00)$ and if $J f(x) d x$ converges then ${ }^{\mathrm{l}} \mathrm{im}_{x \rightarrow \infty} f(x)=0$. 1
12. What is $\mathbf{B}(\mathbf{m}, n)$?

Part B

Answer all questions.
13. Define Lipschitz function.
14. State an prove Bolzano's intermediate value theorem.
15. Show that every constant function on $[a, b]$ is $R[a, b]$.
16. Using First form of fundamental theorem prove that $\left.\boldsymbol{f}_{\mathrm{a}} d x-\frac{1}{2} \quad \boldsymbol{b}^{2} \quad \boldsymbol{u}^{\Omega}\right)$.
17. If $f_{n}(\mathbf{x})=\boldsymbol{x}, x \mathbf{E}[0,1]$, check whether $f_{\boldsymbol{n}}(x)$ converges to zero uniformly.
18. If (\mathbf{f}_{n}) is a sequence of continuous functions converging uniformly to f, prove that f is continuous.
19. Show that $\int^{\infty}-d x$ diverges.
20. Define Gamma function.
21. Show that $B(1, n)=1 / n$.

$$
\text { (} 9 \times 1=9 \text { weightage) }
$$

Part C

Answer any five questions.
22. If f and g are uniform continuous on a subset A of R, then prove that $\mathbf{f}+g$ is uniformly continuous on \mathbf{A}.
23. Show that $f(x)=x e-2$ has a root in $[0,11$
24. If $f \mathbf{E} \mathbf{R}[\mathbf{a}, b]$ then prove that f is bounded on $[a, b]$.
25. State and prove Weierstrass M test for the series.
26. If $(x) \mid d x$ converges absolutely then prove that ${\underset{a}{j}} f(x) d x$ converges.
27. Show that $\mathbf{f}_{\mathbf{0}} \mathbf{x}^{d x}$ diverges.
28. Prove the recurrence formula for gamma function.

$$
\text { (} 5 \times 2=10 \text { weightage })
$$

Part D

Answer any two questions.

29. State and prove Squeeze theorem. Also prove that a step function $\varphi:[a, b] \rightarrow \mathbf{R}$ is in $\mathbf{R}[a, b]$.
30. State and prove Cauchy's criterion for uniform convergence.
31. Show that $\int_{0}^{1} d x$ and $x_{0}^{\infty} x^{2}+r^{1} \quad$ are convergent.

$$
\text { (} 2 \times 4=8 \text { weightage) }
$$

