SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH/APRIL 2015 (U.G.-CCSS)
 Core Course-Mathematics
 MM 6B 12—NUMBER THEORY AND LINEAR ALGEBRA

Time : Three Hours
Maximum : 30 Weightage

Section A

Answer all twelve questions.

1. Find g.c.d. $(143,227)$.
2. State fundamental theorem of Arithmetic.
3. Express 4725 in canonical form.
4. State Feromat's little theorem.
5. Find the sum of divisions of 180 .
6. When will you say a number theoretic function f is multiplicative.
7. Find 4) (360).
8. Define rank of a matrix.
9. Find the rank of the matrix $\left|\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6\end{array}\right|$
10. Find characteristic root of the matrix $\left.\mathrm{A}=\begin{array}{ccc}a & h & \\ \mathrm{O} & b & \mathbf{0} \\ \mathbf{O} & \mathbf{O} & c\end{array} \right\rvert\,$
11. State the nature of the characteristic roots of Hermitian matrices.
12. State Cayley Hamilton theorem.
$\left(12 \times \frac{1}{4}=3\right.$ weightage $)$

Section B

Answer all nine questions.
13. Prove if g.c.d. $(a, b)=d$ then g.c.d. $(a / d, b / a)=1$.
14. Use of Euclidean algorithm to find x and y which satisfies g.c.d. $(56,72)=56 x+72 y$.
15. Check whether the following Diophantine equation can be solved $6 \mathrm{x}+51 \mathrm{y}=22$.
16. Show $\mathrm{a}^{7} \equiv \mathrm{a}(\bmod 42)$ for all a.
17. Determine the highest power of 3 dividing 80 !

$$
123
$$

18. Reduce to the normal form to find rank of $A=234$

$$
\begin{array}{lll}
0 & 2 & 2\rfloor
\end{array}
$$

19, State the Sylvester's law of nullity.
20, Show that the characteristic roots of a triangular matrix are just the diagonal elements of that matrix.
21. Verify Cayley-Hamilton theorem for $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$.
(9x $=9$ weightage)

Section C

Anwer any five questions.
22. Prove there is an infinite number of primes.
23. If $\boldsymbol{a} \boldsymbol{a} \boldsymbol{b}(\bmod n)$ and $\boldsymbol{b} \equiv \boldsymbol{c}(\bmod n)$, then prove $a \equiv c(\bmod n)$.
24. Show $181+1 \equiv 0(\bmod 437)$.
25. Show a $(\mathrm{n})=\mathrm{a}(\mathrm{n}+1)$ if $\mathrm{n}=14$ where $\mathrm{a}(\mathrm{n})=$ sum of divisors of n .
26. Prove Euler's theorem, $\boldsymbol{a}^{\mathbf{\prime} \boldsymbol{n}^{\prime}} \mathrm{a} 1(\bmod \mathbf{n})$ if $\mathrm{n} \geq 1$ and g.c.d. $(\mathrm{a}, \mathrm{n})=1$.

28. Solve the system of equations :

$$
\begin{aligned}
& x+3 y-2 z=0 \\
& 2 x-y+4 z=0 \\
& x 11 y 4-14 z=0
\end{aligned}
$$

Section D

Anwer any two questions.
29 (a) Prove the fundamental theorem of arithmetic.
(b) Solve the linear congruence equation $6 x \equiv 15(\bmod 21)$.

30 (a) State and prove Wilson's theorem.
(b) If n is an odd integer then prove $\phi(2 n)=\phi(n)$.

31 Show that the equations

$$
\begin{aligned}
& x+2 y \quad z=3 \\
& 3 \mathbf{x}-\mathbf{y}+2 z=\mathbf{1} \\
& 2 \mathbf{x}-2 \mathbf{y}+3 z=2 \\
& x-y+z=-1
\end{aligned}
$$

are consistent and solve the same.

