SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2012
(CCSS)

Mathematics-Core Course
 MM 6B 11—NUMERICAL METHODS

Time : Three Hours
Maximum Weightage : 30
I. Answer all twelve questions :

1 Define forward difference operator.
2 Fill in the blanks :

$$
y_{n} \quad=\delta y_{n-\frac{1}{2}}
$$

3 The shift operator E is defined as $E y_{s}=$
$4 \frac{1}{2}\left(\mathrm{E}^{1 /}+\mathrm{E}^{-1 / 2}\right)$
(a) 8 ; (b) μ; (O E ; (d) V •

5 Write Newton's forward difference interpolation formula.
6 Define the eigenvalue of a square matrix.

(a) E^{2}; (b) b^{2}; (c) μ^{-}; (d) Δ^{-}.

8 Backward difference $V_{y 1}=$
9 Write the Trapezoidal Rule.
$\nabla \mathrm{E} \delta \mathrm{E}^{1}=$ \qquad

$$
\text { (a) } \mathrm{E} ; \text { (b) } \mathrm{t} \text {; (c) } \mathrm{V} \text {; (d) } \mathrm{A} \text {. }
$$

11 Write Gauss Backward Formula.
12 Find the integers between which the real root of $x^{3}-x-1=0$ lies.
(12 $\times \frac{1}{4}=3$ weightage)
II. Answer all nine questions :

13 Define central difference operator S.
14 Prove that $\overline{1+\frac{1}{4} \delta^{n}}$.
15 Define averaging operator μ.
16 If $\mathrm{y}_{1}=4, \mathrm{y}_{3}=12, \mathrm{y}_{4}=19$, and $y_{x}=7$ find x using Lagrange's formula.
17 Show that

$$
e^{x}{ }^{\text {c• }} u_{0}+x A u^{0}+\left.\frac{9}{2!} \mathrm{A} u_{0} \quad \ldots \ldots\right|_{I}=e^{-} u_{0}
$$

18 Using the following table find $f(x)$ as a polynomial in x by Newton's General Interpolation Formula :

x	-1	0	3	6	7
$f(x)$	3	-6	39	822	1611

19 Define the spectrum of a square matrix.
20 Write Simpson's $\frac{1}{3}$-rule.
21 Find the first approximate solution of $y^{1}=x+y^{2}$ subject to the condition $y=1$ when $x=0$, using Picard's method.
($9 \times 1=9$ weightage)
III. Answer any five questions :

22 Use the Newton-Raphson method to find a root of the equation $x^{3}-2 x-5=0$.
23 Find the missing term in the following table :

$\mathrm{x}:$	0	1	2	3	4
$\mathrm{y}:$	1	3	9		81

24 Using Lagrange's interpolation formula find the form of the function $y(x)$ from the following table

| $\mathrm{x}:$ | 0 | 1 | 3 | 4 |
| :--- | :--- | :--- | ---: | ---: | ---: |
| $\mathrm{y}:$ | -12 | 0 | 12 | 24 |

25 Using Trapezoidal rule, find from the following table the area bounded by the curve and the x -axis from $\mathrm{x}=7.47$ to $\mathrm{x}=7.52$.

$$
\begin{aligned}
& \mathbf{x} \quad 7.477 .487 .497 .507 .517 .52 \\
& f(x) \quad 1.931 .951 .982 .012 .032 .06
\end{aligned}
$$

26 Use Gauss' elimination to solve :

$$
\begin{aligned}
& 2 x+y+z=10 \\
& 3 x+2 y+3 z=18 \\
& x+4 y+9 z=16
\end{aligned}
$$

27 Tabulate $\mathrm{y}=\mathrm{x}^{3}$ for $x=2,3,4$ and 5 and calculate the cube root of 10 correct to three decimal places.

28 Given the differential equation $\begin{aligned} & d y=x^{2} \\ & d x=y+1\end{aligned}$ with the initial condition $\mathrm{y}=0$ when $\mathrm{x}=0$. Use
Picard's method to obtain y for $\mathrm{x}=0.25$
($5 \times 2=10$ weightage)
IV. Answer two questions

29 Using Ramanujan's method find the smallest root of $(x)=x^{6}-6 x^{2}+11 x-6=0$.
30 Solve the equations $2 x .+3 y+z=9, x+2 y+3 z=6,3 x+y+2 z=8$ by LU decomposition.
31 The differential equation $y^{1}=x^{2}+y^{2}-2$ satisfies the following data

$$
\begin{array}{ccccc}
\mathrm{x} & -0.1 & 0 & 0.1 & 0.2 \\
\mathrm{y} & : 1.0900 & 1.0000 & \mathbf{0 . 8 9 0 0} & 0.765
\end{array}
$$

Use Milne's method to obtain the value of $y(0.3)$.

