\qquad
SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2012 (CCSS)

Mathematics-Core Course
MM 6B 09-REAL ANALYSIS

Time: Three Hours
Maximum : 30 Weightage
I. Objective Type Questions (Answer all twelve questions) :

1 State True or False. "Continuous functions are always bounded".
2 Does the function $f(x) \quad x^{3}-\mathbf{4 x}-\mathbf{3}$ has a root in [2, 3] ?
3 Give an example to a function which is continuous but not uniformly continuous.
4 If $I=\left[\begin{array}{lll}0 & 1\end{array}\right]$, find the norm of the Partion $P:=\left(\begin{array}{llll}0 & 0.2 & 0.6 & 0.8 \\ 0.9 & 1\end{array}\right)$.
5 State True or False. "An unbounded function cannot be Riemann integrable".
6 Consider the Signum function on $[-10,10]$. Then the value of ${ }_{-10}^{+10} \operatorname{Sgn}(x) d x$ is
7 Value of $\lim \left(x^{n}\right)$ for $x E(-1,1)$ is \qquad
8 State Weierstrass-M test.
9 Define uniform norm of a bounded function 4) on $A \subset R$ and 4): $A \rightarrow R$.
10 Give an example of an improper integral.

11 Examine the convergence of $\mathrm{J} \frac{1}{x^{2}} d x$.

12 Write the relation between Beta and Gamma functions.
($12 \times 1 / 4=3$ weightage)
II. Short Answer Type Questions. (Answer all nine questions) :

13 Define a bounded function. Also give an example to a function which is not bounded.
14 Find the absolute maximum and absolute minimum of $g(x)=x^{2}$ in $A:=[-1,1]$.
15 State intermediate value theorem.
16 Show that a constant function on $f a b$] is Riemann integrable on [a
17 State fundamental theorem of calculus.
18 Show that $g_{n}(X)=x$ for $x \in[0,1] ; n \in \mathbf{N}$ is not uniformly convergent.

19 Test for uniform convergence

$$
f n()=\underset{\underline{1+7 \cdot 2 x}}{ } \underline{\mathbf{2} \text { for all real } x .}
$$

20 Examine the convergence of $1 \begin{aligned} & d x \\ & x\end{aligned}$
21 Show that $13(\mathrm{~m}, \mathrm{n}) \mathrm{m})$.
(9 $\times 1=9$ weightage)
III. Short Essay Questions. (Answer any five from seven questions)

22 Let $\mathbf{I}:[\mathrm{a}, \mathrm{b}]$. Let $\mathbf{f}: \mathbf{I} \rightarrow \mathbf{R}$ be a continuous function, prove that f is bounded on \mathbf{I}.
23 Let \mathbf{I} be an interval and $\mathbf{f}: \mathbf{I} \rightarrow \mathbf{R}$ be continuous on I. Prove that $f(\mathbf{I})$ is an interval in \mathbf{R}.
24 If $f \mathbf{E}$ b b, prove that, the value of the $\boldsymbol{y} \quad$ is uniquely determined.
25 Prove that every continuous function is integrable.
26 Prove that A sequence of functions $\{f\}$ which L bounded on $A \subset R$ converges uniformly to $f \quad \| f_{n} \quad f_{\text {A }} \quad 0$.

27 Show that ${ }^{7} \frac{\sin }{} d x$ converges conditionally

28 Prove that $\left.\beta\left(m, \begin{array}{l}1 \\ 2\end{array}\right)=22 \mathrm{~m}-1 \mathrm{~m}, \mathrm{~m}\right)$.

$$
\text { (5. } x 2=10 \text { weightage) }
$$

IV. Essay Questions (Answer any two from three questions) :

29 Let $\mathrm{I}=[\mathrm{a}, \mathrm{b}]$ and $f \mathrm{I} \quad$ be continuous if $f(a)<0<f(b)$ or if $f(a)>0>f(b)$ prove that there exists c in (a, b) with $f(c)=\mathbf{0}$.

30 (i) If f and g are in $\mathbf{R}[a, b]$, prove that $f+g$ is also in $\mathbf{R}[a, b]$.
(ii) State Cauchy 'criterion for integrability of a function and use if to show that the Dirichle
function $f \quad \begin{gathered}1 \text { when } \mathbf{x} \text { is rational } \\ 0 \text { when } x \text { is irrational }\end{gathered}$ is not Riemann integrable in [01].
31 (i) State and prove Weierstrass M-test.
(ii) Prove that $\sqrt{n}=(n \quad-L$

