SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2012 (CCSS)
 Mathematics-Core Course

 MM 6B 12—NUMBER THEORY AND LINEAR ALGEBRA

 MM 6B 12—NUMBER THEORY AND LINEAR ALGEBRA}

Time : Three Hours

Maximum : 30 Weightage
I. Answer all twelve questions.

1. A system of m homogeneous linear equations $A X=0$ is unknown has only trivial solution if:
(a) $m n$
(b) $m n$
(c) $\operatorname{rank}(\mathrm{A})=\mathrm{in}$.
(d) rank $(\mathrm{A})=n$.
2. If the number of variables in a non-homogeneous system $A X=B$ is n then the system possesses a unique solution if :

$$
p[A, 13]=\rho(A)
$$

3. If A is a matrix of order in $\mathbf{x} i i$ and R is a non-singular matrix of order m then $\rho(R A)=$ \qquad
4. If $n>2$ then $(1)(n)$ is an integer.
5. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are integers and $\operatorname{g.c.d.}(a, b, c)=1$ then $\operatorname{gcd}(a, b)=$
6. If N is a positive integer then ${ }_{n-1}^{\sigma} \underset{n=1}{\sigma}$
7. The value of ${ }_{n=1} \mathrm{~T}(n) \mathbf{i}_{\mathrm{s}}$
8. $\boldsymbol{a}^{\prime \prime} \boldsymbol{a}(\bmod p)$ for any integer a if p is a
9. The linear congruence $a x b(\bmod n)$ has a unique solution modulo n if g.c.d. $(a, n)=$
\qquad
10. If $c a c b(\bmod n)$ and $\operatorname{g.c.d}(c, n)=1$ then $a \equiv$ \qquad $(\bmod n)$.
11. When two integers a and b are said to be relatively prime.
12. Find the $\mathrm{k}_{\mathrm{m}}(143,227)$.
II. Short answer type questions. (Answer all nine questions)
13. Prove that if $\operatorname{gcd}(a, b)=d$ then g.c.d. $\left.\begin{array}{cc}" a & b \\ & d\end{array}\right)=1$.
14. Find the remainder when $1!+2!+3!+\ldots \ldots+99!+100!$ is divided by 12 .
15. State Chinese Remainder theorem.
16. Find $\sigma(180)$.
17. Find $\phi(16)$.
18. Show that no skew-symmetric matrix can be of rank 1 .
19. If $\mathrm{A}=\left|\begin{array}{ll}2 & 0 \\ 0 & 8\end{array}\right|$ then find $\rho(\mathrm{A})$
20. Define Null space of a matrix.
21. Examine whether the system of equations $4 x+6 y=5,6 x+9 y=7$ has a solution.
III. Answer any five questions from seven :
22. Show that every square is of the form $3 m$ or $3 m+1$.
23. Prove that the product of any three consecutive integers is divisible by 6 .
24. Prove that $\sqrt{2}$ is irrational.
25. Use the binary exponentiation algorithm to compute $5^{110}(\bmod 131)$.
26. Reducing to the normal form find the rank of the matrix $\left|\begin{array}{cccc}0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1\end{array}\right|$
27. If A is a non-singular matrix prove that the eigenvalues of A are the reciprocals of the eigenvalues of A.
28. Verify Cayley Hamilton theorem for the matrix $\left[\left.\begin{array}{ll}2 & 1 \\ 1 & 2\end{array} \right\rvert\,\right.$
IV. Answer two questions from three.
29. State and prove Wilson's theorem.
30. Prove that $3^{2 n+1} \quad 2 \mathrm{n}+2$ is divisible by 7 .
31. Find the characteristic roots and the corresponding characteristic vectors of the matrix $\left|\begin{array}{cc}-2 & -1 \\ 5 & 4\end{array}\right|$
