D 13791

(Pages : 3)

Name.....

Reg. No.....

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2016

(CUCBCSS-UG)

Core Course-Mathematics

MAT 1B 01—FOUNDATIONS OF MATHEMATICS

Time : Three Hours

Maximum : 80 Marks

Section A

Answer all questions. Each question carries 1 mark.

- 1. Find symmetric difference of the sets $A = \{1, 2, 3, 4, 5\}$; $B = \{4, 5, 6, 7\}$.
- 2. Find $A \times B$ if $A = \{x, y\}$ and $B = \{1, 2, 3\}$.
- 3. Define a symmetric relation on a set A.
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2x 3. Find a formula for $f^{-1}(x)$.
- 5. Represent the relation $R = \{(1, 1), (1, 2), (1, 3), (3, 4)\}$ on $\{1, 2, 3, 4\}$ using a matrix.
- 6. Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3$ and g(x) = 2x + 9 find $f \circ g(x)$.
- 7. Give an example of a function which is continuous at every value of x.

8. Find $\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x}$.

- 9. Discuss the behaviour of $f(x) = \frac{1}{x^2}$ near x = 0.
- 10. Write the converse of the statement 'If the home team wins, then it is raining'.
- 11. Write the truth table for the proposition $p \leftrightarrow q$.
- 12. What is the truth value of $\exists x \ p(x)$ where p(x) is the statement ' $x^2 \ge 16$ ' and the domain consists of positive integers not exceeding 4.

 $(12 \times 1 = 12 \text{ marks})$

Turn over

Section B

Answer all questions. Each question carries 2 marks.

- 13. Determine the power set P(A) of A = (a, b, c, d).
- 14. Let S = (1, 2, 3, ..., 9). Write a partition of S.
- 15. Let $R = \{(1, 3) (1, 4) (3, 2) (3, 3) (3, 4)\}$ be a relation on $A = \{1, 2, 3, 4\}$. Find $R \circ R$.
- 16. Let f: A → B, g: B → C be two functions prove if f and g are one-to-one, then the composition g ∘ f is one-to-one.
- 17. Define a countable set and give an example.
- 18. Write down the conditions for a function f(x) is continuous at x = c.
- 19. State the Sandwich theorem.
- 20. Write the negation of the statement : "There is an honest politician".
- 21. Write De Morgan's laws of propositions.

$(9 \times 2 = 18 \text{ marks})$

Section C

Answer any six questions. Each question carries 5 marks.

- 22. Show $a \equiv b \pmod{5}$ is an equivalence relation on the set of all integers.
- 23. Let $A = \{1, 2\}$, $B = \{a, b, c\}$, $C = \{c, d\}$. Find $(A \times B) \cap (A \times C)$ and $A \times (B \cap C)$.
- 24. Let $f: A \to B, g: B \to C, h: C \to D$. Prove $(f \circ g) \circ h = f \circ (g \circ h)$.
- 25. Let $A = \{a, b\}$ and $B = \{1, 2, 3\}$. Find the number of functions (1) from A into B; (2) from B into A.
- 26. Prove that $\lim_{x \to 2} f(x) = 4$ if

$$f(x) = \begin{cases} x^2, & x \neq 2\\ 1, & x = 2 \end{cases}$$

27. At what points the function

 $y = \frac{1}{x-2} - 3x$ is continuous.

- 28. Write the converse, contrapositive and inverse of the conditional statement "If it snows today, I will ski tomorrow".
- 29. Construct a tenth table for the compound proposition $(p \lor q) \oplus (p \land q)$.
- 30. Show that $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are logically equivalent.

 $(6 \times 5 = 30 \text{ marks})$

Section D

Answer any **two** questions. Each question carries 10 marks.

- 31. (a) Let $A = \{a, b, c, d\}$. Give a relation on A which is (1) Reflexive ; (2) Symmetric ; (3) Antisymmetric.
 - (b) Define partial ordering relation on a set S. Show that the relation \leq on the set R of real numbers is a partial ordering.
- 32. (a) Prove that a function $f: A \to B$ us invertible iff f is one-to-one and onto.
 - (b) Define recursively defined functions and give an example.
- 33. (a) Translate into logical expression using predicates and quantifiers. "Someone in your class has visited Mexico". Domain consists of all students in your class.
 - (b) Show $p \leftrightarrow q$ and $(p \rightarrow q) \land (q \rightarrow p)$ are logically equivalent.
 - (c) Write the negation of the statement :

'All Americans eat cheeseburgers'.

 $(2 \times 10 = 20 \text{ marks})$