FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2014

(U.G.-CCSS)

Core Course-Mathematics MM 5B 08—DIFFERENTIAL EQUATIONS

Time : Three Hours
Maximum 30 Weightage

Section A

Answer all questions.
Each question carries ${ }^{1 / 4}$ weightage.

1. What is the order of $\left(y^{\prime \prime \prime}\right)+\left(y^{\prime \prime}\right)^{7}+y=\sin t$?
2. Give the general form of a separable equation.
3. Test for exactness : $(2 \mathbf{x}+4 y) d x+(2 \mathbf{x}-\mathbf{2 y}) d y=\mathbf{0}$.
4. Solve $y^{\prime \prime}-\mathbf{y} 0$.
5. State Abel's theorem.
6. Find the Wronskian of $y_{1}=e^{2 t}, \cdots=--3 \mathrm{t}$
7. What is $L\left\{e^{-}\right\}$?
8. State true or false : The Laplace transform is a linear operator.
9. Find $L\{\sin 3 t\}$
10. What is the fundamental period of $\sin 7 t$?
11. What is the heat conduction equation?
12. Is the function $f(x)=x \mid x$ even, odd or neither?

Section B

Answer all questions.
Each question carries 1 weightage.
13 Verify that $\mathrm{y}=3 \mathrm{t}+\mathbf{t}^{\mathbf{2}}$ is a solution of $t y-\mathrm{y}=\mathrm{t}^{2}$.
14. State the existence and uniqueness theorem for first order initial value problems.
15. Verify whether ' y ' is an integrating factor of $y d x \quad 2 x d y=\mathbf{0}$.
16. Solve $2 \mathrm{y}^{\prime \prime}-5 y+3 \mathrm{y}=2 e^{t}$.
17. Solve $\mathrm{y}+a^{2} y=\mathbf{0}$.
18. Find $\mathrm{L}\{\sinh 7 t\}$
19. Show that convolution is commutative.
20. Show that the sum of two even functions is even
21. Graph the square wave function.

$$
\text { (} 9 \times 1=9 \text { weightage })
$$

Section C

Answer any five questions.
Each question carries 2 weightage.
22. Find an integrating factor and solve :
$\left(\mathbf{2} \mathbf{x}^{\mathbf{2}} \quad\right.$ y) $d x+\left(x^{-} y-x\right) d y=0$
23. Solve the initial value problem :

$$
(y+2) d x+y(x+4) d y \quad ; y(--3)=-1
$$

24. Solve the initial value problem :
$y^{\prime \prime}-2 y+\mathrm{y}=t e^{+}, y(0)=1, y(0)=1$.
25. Solve $y+y=\sin t \sin 2 t \cdot$
26. Find $L^{-}\left\{2 /\left(s^{2}+3 s 4\right)\right\}$.
27. Find $\left\{t^{2} e^{a t}\right.$
28. Find the Fourier sine series of $\quad(x)=\left\{\begin{array}{l}x, 0 \leq x<1, f \text { is of } \\ 1,1 \leq \mathrm{x}<2, \text { period } 4\end{array}\right.$.

Section D

Answer any two questions.
Each question carries 4 weightage.
29. Solve by the method of variation of parameters :

$$
\mathrm{y}=\tan t, \mathrm{O}<t<\frac{\pi}{2}
$$

30. (0 Using convolution, find $\mathrm{L}^{-1} \frac{1}{\frac{-\bar{s}(s+2))}{}}$
(ii) Using Laplace transforms, solve

$$
\begin{array}{r}
y^{\prime \prime}-y^{\prime}-6 y=0 \\
y(0)=1, y^{\prime}(0)=
\end{array}
$$

31. Find the Fourier series expansion of :

$$
f(x)=\begin{gathered}
-x,-2 \quad<0, f(x+=(x) \\
x, 0 \leq x<2
\end{gathered}
$$

Deduce that ${ }_{8}^{\pi}=1+{ }_{32}^{1}+\frac{1}{2}+\ldots$

