FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2014

(UG-CCSS)

Core Course-Mathematics
MM 5B 06-ABSTRACT ALGEBRA

Time : Three Hours
Maximum : 30 Weightage

Part A
 Answer all questions.

1. Is the usual multiplication a binary operation on the set $\mathbf{H}={ }^{2} / n \in$
2. Find the sum of 21 and 34 modulo 45.
3. A group homomorphism is one to one if and only if $\operatorname{Ker} \phi=$
4. Describe Klein 4-group.
5. Find the quotient and remainder when - 38 is divided by 7 .
6. Find the inverse of the permutation | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
7. Define orbits of a permutation a of a set \mathbf{A}.
8. Find the index of the subgroup $\mathbf{H}=\left(0,31\right.$ in the group z_{6}.
9. Determine whether the map $4:(R,+) \rightarrow(Z,+)$ is given by 4$)(x)=$ greatest integer less than or equal to x is a homomorphism.
10. Give an example of a ring with unit element.
11. Define basis of a vector space.
12. Express $(3,-2,5)$ as a linear combination of $(2,0,0),(0,2,0)$ and $(0,0,2)$.
($12 \times 1 / 4=3$ weightage)

Part B

Answer all questions.
13. Find the sum of 23 and 31 modulo 45.
14. Show that the binary structures $(Q,+)$ and $\left(Z_{1}+\right)$ under usual addition are not isomorphic.
15. Show that set of all real numbers other than $1 f d m$ a group under the operation $a * b=a+b-a b$.
16. Find the quotient and remainder when -38 is divided by 9 according to division algorithm,
17. Express the permutation $\left.a=\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6^{\text {(}} \\ 4 & 2 & 6 & 1 & 3\end{array}\right)$ as a product of transpositions.
18. Find the cyclic subgroup generated by 8 in the group Z_{12}.
19. Prove that every group of prime order is cyclic.

20 . Find the units in the ring Z_{5}.
21. If U and W be two subspaces of a vector space V , then prove that $\mathrm{U} n \mathrm{~V}$ is also a subspace of V .

Part C

Answer any five questions.
22. Let G be a group then prove the following :
(a) $\mathrm{a}^{-}=\mathrm{a}$ for all a E G.
(b) $\quad(\mathrm{a} * \mathrm{~b})^{-}=b^{-} * a^{-1}$ for all $\mathrm{a}, b \mathrm{E}$ G.
23. Prove that a subset H of a group G is a subgroup of G if and only if the following conditions are satisfied
"(a) H is closed under the operation in G.
(b) The identity e of G is in H.
(c) For all $a_{E} \mathbf{H}$ it is true that $\mathrm{a}^{-1} \mathrm{E}_{\mathrm{H}} \mathbf{H}$.
24. Show that subgroup of a cyclic group is cyclic.
25. Every permutation a of a finite set is a product disjoint cycles. Prove this theorem.
26. Find all the subgroups of Z_{18} and draw the lattice diagram.
27. If p is prime, show that Zp has no divisors of 0 .
28. Find K such that $S=\{(2,-1,3),(3,4,-1),(K, 2,1)\}$ is L.I.

Part D

Answer any two questions.
29. Prove that every group is isomorphic to a group of permutations.
30. Let ϕ be a homomorphism of a group G into a group G^{\prime} then prove the following
(a) If a e G, then (I) $\left(\mathrm{a}^{-1}\right)=\phi(a)^{-}$.
(b) If \mathbf{H} is a subgroup of G, then $\phi[\mathrm{H}]$ is a subgroup of G^{\prime}.
31. Let $\mathbf{S}_{\mathbf{1}}=\{(\mathbf{1}, \mathbf{2}, \mathbf{3}),(\mathbf{0}, \mathbf{1}, \mathbf{2}),(\mathbf{3}, \mathbf{2}, \mathbf{1})\}$ and $\mathbf{S}_{\mathbf{2}}=\{(1,-2,3),(\mathbf{- 1}, \mathbf{1},-\mathbf{2}),(\mathbf{1},-\mathbf{3}, 4)\}$ of $\mathbf{V}_{\mathbf{3}}$ determine the basis and dimension of $\left[\mathrm{s}_{1}\right]+\left[\mathrm{s}_{2}\right]$.

$$
\text { (2 } \times 4=8 \text { weightage) }
$$

