FIFTH SEMESTER B.Sc. DEGREE (U.G.—CCSS) EXAMINATION NOVEMBER 2014

(SDE)

Mathematics

MM 5B 07—BASIC MATHEMATICAL ANALYSIS

Time : Two Hours and Forty-five Minutes

Maximum : 27 Weightage

Part A

Answer all the **nine** questions.

- 1. Define direct image and inverse image of a set under a function with example.
- 2. Check whether the function $f: A \to R$, where $A = \{x \in R | x \neq 1\}$ defined as $f(x) = \frac{1}{x} 1$ is an injective map
- 3. Determine the set A of real numbers x such that 2x + 3 < 6
- 4. State the supremum properly and infimum property of R.
- 5. Show that a sequence of real numbers can have atmost one limit.

6. Find $\lim_{n \to \infty} \frac{2n}{n^2}$

- 7. If $x = \lim x_{\mu}$ then prove that I x I = $\lim I x_{\mu}$ I
- 8. Show that : (a) $\left| e^{iQ} \right| = 1$; (b) $\left[e^{i\Omega} \right] =$
- 9. Prove that z is real if and only if z = z.

 $(9 \times 1 = 9 \text{ weightage})$

Part B

Answer any five questions.

- 10. State and prove Bernoulli's inequality.
- 11. Prove that |a + b| < |a| + |b| for any two real numbers a and *b*.

- 12. Prove that Sup (a + S) = a + Sup S for any non-empty subset S of R that is bounded above and a E R •
- 13. If the sequences (x_n) and (y_n) converges to x and y respectively. Show that $(x_n + y_n)$ and (cx_n) , $c \in \mathbb{R}$ converges to x + y and cx respectively.
- 14. State and prove squeeze theorem for sequences of real numbers.
- 15. Give an example of a bounded sequence that is not Cauchy.
- 16. Find the principal argument $\operatorname{Arg}(z)$ when $z = (\sqrt{z} z)$
- 17. Find all values of $(-8i)^{\frac{1}{3}}$.

 $(5 \times 2 = 10 \text{ weightage})$

Part C

Answer any two questions.

- 18. Prove the existance of a positive real number x such that $x^2 = 2$.
- 19. Show that (b) converges if and only if 0 < b < 1.
- 20. Find all the nth roots of unity.

 $(2 \times 4 = 8 \text{ weightage})$