Reg. No.....

IFTH SEMESTER B.Sc. DEGREE (U.G.—CCSS) EXAMINATION NOVEMBER 2014

(SDE)

Mathematics

MM 5B 08—DIFFERENTIAL EQUATIONS

Part A

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- Immediately after the commencement of the examination, the candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Write the Name, Register number and the date of examination in the space provided.
- Each question is provided with choices (A), (B), (C) and (D) having one correct answer.
 Choose the correct answer and enter it in the main answer-book.
- 5. Candidate should handover this Question paper to the invigilator after 15 minutes and before receiving the question paper for Part B Examination.

MM 5B 08—DIFFERENTIAL EQUATIONS

Part A

Multiple Choice Questions

- 1. The order of the differential equation $(y'')^2 + y = e^x is$
 - (A) 0. (B) 1.
 - (C) 2. (D) None of these.
- 2. Which of the following is a separable differential equation ?
 - (A) $\frac{dy}{dx} \frac{x^2}{1-y^2}$ (B) $\frac{dy}{dx} \frac{x+y}{x-y}$ (C) $\frac{dy}{dx} + (\sin x) y = \mathcal{E}$ (D) $\left(\frac{dy}{dx}\right)^2 + (\sin x) y = 0$.
- 3. An integrating factor of the differential equation $ty' + 2y = 4t^2$ is ?
 - (A) t^3 . (B) t^4 . (C) t^2 . (D) None of these.
- 4. The general solution of the differential equation $2x (3x + y ye^{-x}) dx + (x^2 + 3y^2 + e^{-x}) dy = 0$ is :
 - (A) $x^{2}y + ye^{-x^{2}} + 2x^{3} + y^{3} = C.$ (B) $x^{2}y^{2}yex^{2} + (2x + y^{2} = C).$ (C) $xy + ye^{-x^{2}} + y^{2} = C.$ (D) $xy^{2} + y + 2x^{3}e^{-x^{2}} + y^{3} = C.$
- 5. The solution of the differential equation $y' = y^2$, y (0) =1 exists in the region :
 - (A) $(0, \infty)$. (B) (-00, 0).
 - (C) $(-\infty, 1)$. (D) (-00, 00).
- 6. The general solution of the differential equation $(D^2 + 2D + 3) y = 0$ is :
 - (A) $y = e^{+x} [c_1 \cos 2x + c_2 \sin 2x]$. (B) $y = e^x [c_1 \cos 2x + c_2 \sin x]$ (C) $y = e^{-x} [c_1 \cos 2x + c_2 \sin \sqrt{2} x]$ (D) None of these.
- 7. A particular solution of the differential equation $y'' + y = \tan x$ is :
 - (A) $\cos x \log(\sec x + \tan x)$. (B) $\cos x \log(\sin x + \cos x)$.
 - (C) $\text{Log}(\sin x + \cos x)$. (D) $\text{Log} \sin x$

- 8. A particular solution of y'' + 5y, 4. $6y = e^{2x} \mathbf{i}_s$:
 - (A) $\frac{e^{2x}}{20}$ (B) 20 (C) e^{2x} (D) e^{-2x} .
- 9. The Differential equation $x^2 y'' xy' 3y = x^2 \log x$ can be converted into a differential equation with constant coefficients using the transformation :
 - (A) x = e (B) $\sum_{z=e}^{x} e^{-z}$ (C) $x = \log z$. (D) $x = z^{2}$.
- 10. If $y_1(x)$ and $y_2(x)$ are two independent solutions of the linear differential equation $a_0(x)y'' + a_1(x)y' + a_2 + [x]y = 0$ then
 - (A) $y_1(x) y_2(x)$ is also a solution. (B) $y_1(x) + y_2(x)$ is also a solution.
 - (C) $y_1(x) / y_2(x)$ is also a solution. (D) $y_2(x)$ is also a solution.
- 11. Let $y_1(x)$ and $y_2(x)$ be two linearly independent solutions of the differential equation $a_0(x)y'' + a_1(x)y' + a_2[x]y = 0$ then the Wronskian $w(y_1, y_2)$ is :
 - (A) **1.** (B) **0.**
 - (C) 2. (D) 1.
- 12. The characteristic equation of the differential equation $[D^2 4D + 4] y = 0$ is
 - (A) $(\lambda 2)^3 = 0.$ (B) $(\lambda + 2)^2 = 0.$ (C) $(\lambda - 2)^2 = 0.$ (D) $(\lambda - 1)(\lambda - 2) = 0.$
- 13. The characteristics roots of the differential equation $(D^2 8D + 25) y = 4 \cos^2 2x$ are :
 - (A) Real (B) Complex.
 - (C) Real and complex. (D) None of these.
- 14. Which of the following is a boundary value problem :-

(A)
$$y' + y = 0, y(0) = 1, y'(0) = 0.$$

- (B) y'' + 5y = 0, y(0) y'(0) = 3.
- (C) $\mathbf{x^2} \mathbf{y''} + x\mathbf{y'} + y = 0, \ y(0) = 0, \ y(1) = 2.$
- (D) + y'' + y = 0, y(0) = y'(0) = y''(0) = 0.

15. The general form of a first or linear equation is

(A)
$$\frac{dy}{dx}$$
 Py = Q where P and Q are functions of x.
(B) $\frac{d^2y}{dx^2}$ + Py = Q where P is a functions of x.
(C) $\frac{dy}{dx}$ = Q where Q is a function of x.

- (D) None of these.
- 16. The general solution of the differential equation y'' + y = 0 is
 - (A) $\mathbf{v} = a \operatorname{Sin} + b \operatorname{Cos} x$. (B) $y = a \sin x$. (C) $\mathbf{v} = b \cos x$. (D) $\mathbf{v} = \mathbf{Sin} \times \mathbf{-Cos} \mathbf{x}$.

17. If $\frac{1}{M} \begin{pmatrix} \frac{\partial N}{\partial x} & \frac{\partial M}{\partial y} \end{pmatrix}$ is a function of y only, then an integrating factor of the differential equa

- Mdx + Ndy = 0 is :
 - (A) $(x) = \exp\left[\int -\frac{\partial \mathbf{r}}{\partial y}dy\right]$ (B) $x = \exp\left[\int \frac{1}{\mathbf{M}} (\partial \mathbf{N} + \partial \mathbf{M})dy\right]$ (C) $\iota(x) = \int_{\mathbf{M}} \left(\begin{array}{c} \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \end{array} \right) dy.$ (D) $\mu^{(x)} = \frac{1}{\mathbf{M}} \left(\begin{array}{c} \frac{\partial \mathbf{N}}{\partial x} & \frac{\partial \mathbf{M}}{\partial y} \end{array} \right) dy.$
- An integrating factor of the differential equation $\frac{du}{dy} + \mathbf{P}(x) = \mathbf{Q}(x)$ is 18.
 - (A) $e^{\int pdx}$ (B) e^{-fpdx} .
 - (D) $e^{f(p+Q)dx}$ (C) $\int p \, dx$

19. The initial value problem $y' = y^{y^{-1}} y(0) = 0, t = 0$:

- (A) A Unique solution.. (B) Infinitely many solutions.
- (C) No solution. (D) Two solution.

The general solution of the differential equation 3 $(x^2 + y^2) dx + x (x^2 + 3y^2 + 6y dy = 0$ is : 20.

- (B) $\int_{x}^{3} e^{y} + 3xy e^{2} = c$. (A) $\mathbf{x}^3 e^{-1} + 3xy e^y = c$.
- (C) $x^2 e^{-1} + 3x^2 v^2 e^{y} = c$ (D) $xe^y + ye?' = c$.

