FIFTH SEMESTER B.Sc. DEGREE (U.G.-CCSS) EXAMINATION NOVEMBER 2014
 (SDE)

 Core Course-Mathematics

 Core Course-Mathematics
 MM 5D 03-MATHEMATICS FOR SOCIAL SCIENCES

Time : Two Hours and Forty-five Minutes Maximum :27 Weightage
Part B
PARTI
Answer all the nine questions.

1. Write the equation of the line passing through $(1,-1)$ and having slope
2. Solve by factorising $\mathbf{x}^{2}+12 x+35=0$ -
3. Evaluate ${ }_{x \rightarrow-4} \operatorname{Lt}_{16}\left(\frac{4}{16}-x_{2}\right.$
4. If $u=t^{\sim}+\mathbf{3 t}+\mathbf{1}$ find $d y$
5. If the cost function is $C=x^{2}+10 x+48$, find the marginal cost at $n=6$.
6. Show that $\mathbf{y}=(4 \mathrm{x}-5)^{2}$ is increasing at $x=3$.
7. Find $\left.\log _{2} \begin{array}{cc}1 \\ & 32\end{array}\right)$
8. Find the derivative of $y=$
9. Evaluate $\mathbf{j}\left(\mathbf{x}^{2}-3 \mathbf{x}+1\right) d x$

PART II

Answer any five questions.
10. Solve $-5 x+y=-86 x-y=11$.
11. Given $f(x)=x^{3} ; g(x)=x^{2}-2 \mathbf{x}+5, h(x)={ }_{\mathbf{x}}^{+} \mathbf{4} ;(\mathbf{x}-4)$. Find $g(f(\mathbf{x}))$ and $f(h(x))$
12. Given the average cost function $A=2 Q^{2}-5 Q+7+\frac{200}{}$. Find the marginal cost function.
13. Find the relative maximum and minimum of $f(x)=-5 x^{3}+22.5 x^{2}+420 x+85$.
14. Use logarithmic differentiation to find the derivative of

$$
y=\left(x^{4}+7\right)\left(x^{5}+6\right)\left(x^{2}+2\right)
$$

15. Evaluate ${ }_{4}{ }^{36}-d x$.
16. Find the cross partial derivatives of :

$$
f(x, y)=5 x^{3} y^{2}-10 x^{2} y^{4} .
$$

$$
\text { (} 5 \times 2=10 \text { weightage) }
$$

PART III

Answer any two questions.
17. (a) Find the slope, x-intercept and y-intercept of $3 x+y=7$.
(b) Find the equation of a line passing through $(-2,5)$ and perpendicular to the line $4 x-y+3=0$.
18. (a) Find $\frac{d y}{d x}$ if $y=\frac{7 x^{3}}{4 x+9}$
(b) Given the cost function $C=8 Q+4 \sqrt{Q}+95$ and the production schedule is $Q=150 t+2700$. Find the rate of change of cost w.r.t. time at $t=\mathbf{6}$.
19. (a) Given $y=\left(x^{3}-2\right)\left(x^{2}-3\right)(8 x-5)$. Apply logarithmic differentiation, to find $\frac{d y}{d x}$
(b) Evaluate $\left.\int 3 x^{2} 3+7\right) d x$.
8. The value of $\int x d x$ is
(A) $2_{2}^{x}+c$.
(B) $2 \mathrm{x}+c$.
(C) $\frac{x^{2}}{3}+c$.
(D) $2+c$.
9. At $\mathbf{x}=2$ the function $f(x)=10$ is
(A) Increasing.
(B) Decreasing.
(C) Inflection.
(D) Slope $=0$.
10. The limit of $\left(1+{ }^{1}\right)^{n}$ as $n \rightarrow \infty$ is \qquad
(A) 0 .
(B)
(C) e.
(D) 1 .
11. The value of $\log _{9} 27$ is equivalent to
(A) 2 .
(B) 3 .
(C) 81 .
(D) 2 .
12. $\frac{1}{2} \ln 49$ 祍 e ivalent to
(A) in 22.
(B) In 7.
(C) $\ln 47$.
(D) in 22.5.
13. The vertex of the parabola $y=(x+2)^{2}+9$ is
(A) $(-2,3)$.
(B) $(-2,9)$.
(C) $(2,9)$.
(D) $(2,3)$.
14. The axis of the parabola $y=x^{2}-8 x+16$ is
(A) $x=4$.
(B) $x=-4$.
(C) $x=8$.
(D) $y=4$.
15. The limit of $\mathbf{1}(\boldsymbol{x})=\boldsymbol{x}^{2}+x(x-3$ as $\mathbf{x} \quad \mathbf{3}$ is
(A) 3.
(B) 9 .
(C) 0 .
(D) -3 .
16. The limit of $1 \quad,=\frac{x^{2}-\frac{x}{x^{2}}-25}{25}$ as $x \quad 5$ is
(A) 0.
(B)
(C) $\frac{9}{10}$.
(D) Limit does not exist.
17. The function $f \quad \boldsymbol{f}=\begin{gathered}x-5 \\ x^{2}-25\end{gathered}$ is discontinuous at
(A) 5 .
(B) -5 .
(C) 25 .
(D) 5 and -5 .
18. The slope of $f(x)=3 x^{2}-5 x$ at $(2,5)$ is \qquad
(A) 7.
(B) 6 .
(C) 0 .
(D) 12 .
19. If $f(x)=(2 x+5)^{5}$ then $f(x)$ is \qquad
(A) $\left(2 \frac{5}{x+5}\right)^{5}$
(B) $5(2 x+5)^{4}$.
(C) $\frac{(2 x+5)^{6}}{12}$
(D) $10(2 x+5)^{4}$.
20. If $f(x)=6 \mathbf{x}^{3}$ then \quad is
(A) $\frac{5}{x}$.
(B) $\mathbf{1 8} \mathbf{x}^{2}$.
(C) $\mathbf{3 6 x}$.
(D) 36.

