D MIVI

wages ; z)

Reg. No.....

FIFTH SEMESTER B.Sc. DEGREE (U.G.—CCSS) EXAMINATION NOVEMBER 2014

(SDE)

Core Course—Mathematics

MM 5D 03—MATHEMATICS FOR SOCIAL SCIENCES

Time : Two Hours and Forty-five Minutes

Maximum : 27 Weightage

Part B

PART I

Answer all the nine questions.

- **1.** Write the equation of the line passing through (1, -1) and having slope
- 2. Solve by factorising $x^2 + 12x + 35 = 0$.
- 3. Evaluate $\lim_{x \to -4} \left(\frac{4+x}{16-x} \right)^2$
- 4. If $u = t^{+} + 3t + \frac{1}{2}$ find $\frac{dy}{dt}$
- 5. If the cost function is $C = x^2 + 10x + 48$, find the marginal cost at n = 6.
- 6. Show that $y = (4x 5)^2$ is increasing at x = 3.
- 7. Find $\log_2 \begin{pmatrix} 1 \\ 32 \end{pmatrix}$
- 8. Find the derivative of y =
- 9. Evaluate $j(x^2 3x + 1) dx$

 $(9 \times 1 = 9 \text{ weightage})$

Turn over

PART II

Answer any five questions.

10. Solve -5x + y = -86x - y = 11.

11. Given
$$f(x) = x^3$$
; $g(x) = x^2 - 2x + 5$, $h(x) = \frac{1}{x+4}$; $(x - 4)$. Find $g(f(x))$ and $f(h(x))$

12. Given the average cost function $A = 2Q^2 - 5Q + 7 + \frac{200}{2}$. Find the marginal cost function.

- 13. Find the relative maximum and minimum of $f(x) = -5x^3 + 22.5x^2 + 420x + 85$.
- 14. Use logarithmic differentiation to find the derivative of

$$y = (x^4 + 7)(x^5 + 6)(x^2 + 2).$$

15. Evaluate $\int_{4}^{36} \frac{1}{dx} dx$.

16. Find the cross partial derivatives of :

$$f(x,y) = 5x^3y^2 - 10x^2y^4 \, .$$

 $(5 \times 2 = 10 \text{ weightage})$

PART III

Answer any two questions.

17. (a) Find the slope, x-intercept and y-intercept of 3x + y = 7.

(b) Find the equation of a line passing through (-2, 5) and perpendicular to the line 4x - y + 3 = 0.

- 18. (a) Find $\frac{dy}{dx}$ if $y = \frac{7x^3}{4x+9}$
 - (b) Given the cost function $C = 8Q + 4\sqrt{Q} + 95$ and the production schedule is Q = 150 t + 2700. Find the rate of change of cost w.r.t. time at t = 6.
- 19. (a) Given $y = (x^3 2) (x^2 3) (8x 5)$. Apply logarithmic differentiation, to find $\frac{dy}{dx}$

(b) Evaluate $\int 3x^2 \xrightarrow{5} dx$.

 $(2 \times 4 = 8 \text{ weightage})$

8. The value of $\int x \, dx$ is

(A) $(A)^{\times} + c$. (B) 2x + c. (C) $\frac{x^2}{3} + c$. (D) $_{2} + c$. 9. At x = 2 the function f(x) = 10 is — (A) Increasing. (B) Decreasing. (C) Inflection. (D) Slope = 0. 10. The limit of $(1^{+1})^n$ as $n \to \infty$ is _____ (A) 0. **(B)** (C) *e*. (D) 1. 11. The value of log₉27 is equivalent to 2. (A) **(B)** 3. (D) ³/₂. (C) 81. 12. $\frac{1}{2}$ 1n 49 is e ivalent to _____ (A) in 22. (B) In 7. (D) in 22.5. (C) ln 47. 13. The vertex of the parabola $y = (x+2)^2 + 9$ is ------(A) (-2, 3). (B) (-2, 9). (C) (2, 9). (D) (2, 3).

14. The axis of the parabola $y = x^2 - 8x + 16$ is ______ (A) x = 4. (B) x = -4. (C) x = 8. (D) y = 4.

15. The limit of **1** (x) = $x^2 + x(x - 3 \text{ as } x)$ **3** is _____

(A) 3. (B) 9.
(C) 0. (D) -3.

Turn over

16. The limit of $l = \frac{x^2 - x - 20}{x^2 - 25}$ as x 5 is _____ **(B)** (A) **0**. (C) $\frac{9}{10}$. (D) Limit does not exist. 17. The function $f = \frac{x-5}{x^2-25}$ is discontinuous at _____ **(B)** -5. (A) 5. **(D) 5 and – 5.** (C) 25. The slope of $f(x) = 3x^2 - 5x$ at (2, 5) is _____ 18. (A) 7. **(B) 6.** (C) 0. (D) 12. **19.** If $f(x) = (2x+5)^5$ then f(x) is ______ (A) $(2_{x+5})^5$ **(B)** 5 $(2x+5)^4$. (C) $\frac{(2x+5)^6}{12}$ (D) 10 $(2x + 5)^4$. 20. If $f(x) = 6x^3$ then) is -(A) $\frac{5}{4}$. **(B)** $18x^2$. (C) 36x. (D) 36.

s the co vere co "We

е