## Reg. No

$\qquad$

# FIFTH SEMESTER B.Sc. DEGREE (U.G.-CCSS) EXAMINATION NOVEMBER 2014 

(SDE)

## Mathematics

## MM 5B O8—DIFFERENTIAL EQUATIONS

Time : Two Hours and Forty-Five Minutes
Maximum : 27 Weightage

## Part B

## Section A

Answer all questions.
Each question carries weightage 1.

1. Find the order and degree of $y=x \frac{d y}{d x}+d_{y}^{x} / d x$
2. Is $x=\mathrm{a} \sin \left(n t+0\right.$ o) a solution of $\frac{u}{d t} \overline{-}+\mathrm{n}^{2} \mathrm{X}=\mathrm{O}$ ? Why ?
3. Is $y d x-x d y+\left(x^{2}+y^{2}\right) d x=0$ exact
4. State the existence and uniqueness theorem for solutions of a first order differential equation.
5. Solve $(e x+1) y d y=e x(y+1) d x$.
6. Solve $\begin{aligned} & \mathbf{u} \mathbf{y} \\ & d x^{2}\end{aligned}+\mathbf{a}^{2} y=0$.
7. Give the standard form of a homogenous differential equation of second order.
8. Solve $\frac{d^{2}-\frac{y}{\lambda}-+6}{d x} d x+9 y-\mathbf{0}$.
9. Find the complex conjugate and modulus of $\boldsymbol{z}=\mathbf{- 1}-\sqrt{3} i$.

$$
\text { ( } 9 \times 1=9 \text { weightage) }
$$

## Section B

Answer any five questions.
Each question carries weightage 2.
10. Test for exactness and solve if possible :

$$
(1+x y) y d x+(1-x y) x d y=0
$$

11. Find the differential equation of the family of circles with their centres at the origin.
12. Define Wronskian of two functions and use it to check whether $y=x e^{x}$ and $\mathrm{y}_{2}=x e^{x}$ are linearly independent.
13. Solve $\begin{aligned} & d^{2} y \\ & d x \\ & 12 \\ & d x\end{aligned} x^{\prime}+36 y-e^{-}$
14. Solve $\frac{d y}{d x^{2}}+2 \frac{d y}{d x}+y=2 \mathrm{x}+\mathrm{x}^{2}$.
15. Express in modulus amplitude form :

$$
\begin{array}{cc}
\underline{1} & \underline{1} \\
(2+i)^{2} & (2-
\end{array}
$$

16. If $z_{1}$ and $z_{2}$ are any two complex numbers, find the modulus and amplitude of $z_{1}, z_{2}$ and ${ }^{z}$ and represent them geometrically.

$$
\text { ( } 5 \times 2=10 \text { weightage) }
$$

## Section C

III. Answer any two questions. Each question carries weightage 4.

17 Find the solution by the method of variation of parameters :

$$
\frac{d^{2}{ }_{\wedge}^{\prime}}{d x^{2}} \quad \frac{d_{n}}{d x}-6 y=e^{-x}
$$

18 Solve the following :
(a) $\frac{d^{2}}{d x} \stackrel{d_{n}}{=}+5 \frac{1}{d x}-\sigma y=\sin 4 x \sin x$.
(b) $\frac{d^{2} y}{d x^{2}}+4 y=\cos 2 x$.

19 (a) If $\mathbf{a}+=\stackrel{\mathbf{1}}{a+i b}$, prove that $\left(\mathbf{a}^{2} \quad \beta^{2}\right)\left(\mathbf{a}^{2}=\mathbf{b}^{2}-\mathbf{1}\right.$
(b) Show that the sum of two complex numbers is again a complex number.
(c) If $z$ is a complex number and $z$ its conjugate, find the real and imaginary any parts of $z$ in terms of $z$ and
(d) Determine the region in the $z$ plane represented by
(i) $\mathbf{1}<|z+2 i| 53$.
(ii) $\pi / 6 \leq \mathrm{amp} . z \leq \pi / 3$.

