IIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2011 (CCSS)

Mathematics-Core Course
MM 5B 05-VECTOR CALCULUS

Time : Three Hours
Maximum Weightage : 30
Answer all the twelve questions.

1. A vector that is perpendicular to both of the vectors A and B is
2. Find parametric equations of the line through the points $P(-2,0,3)$ and $Q(3,5,-2)$.
3. Write a vector normal to the plane $\mathrm{ax}+b y+c z=d$.
4. The Cartesian equation of the surface $z=r^{2}$ is
5. A particle moves along the curve $\mathbf{x}=3 \times 2 \cdot \mathrm{t} 2, \tilde{\imath}=\mathbf{t} 3$. Find the velocity at $t=1$.
6. The curvature of a straight line is
7. Domain of the function $-y, y)=\begin{gathered}1 \\ x y z\end{gathered}$ is
8. Find $d y / d x$ if $x^{2}+\sin y 2 y=0$.
9. Find the gradient of the function $f(x, y)=y-x$ at $\mathbf{(2 , 1)}$.
10. Write the Taylor's formula for $f(x, y)$ at the origin.
11. State Fubini's theorem (first form) for calculating double integrals.
12. Find the divergence of $\mathbf{F}=2 x z i-x y_{j}=z k$.

Answer all the nine short answer questions.
13. Find the angle between the planes $3 x-6 y .-2 z=15$ and $2 x+y-2 z=5$.
14. Find the spherical coordinate equation for the sphere $\mathrm{x}^{2}+\mathrm{y}^{2}+(z-1)^{2}=1$.
15. Show that the function $f(x, y, y)=x^{2}+y^{2}-2 z^{2}$ satisfies the Laplace's equation $\begin{aligned} & \partial^{2} f x^{\mathbf{a} 2} f \\ & \partial x^{2}\end{aligned}{ }_{\partial y^{2}}+{ }^{\mathrm{a} 2} f=$.
16. . Find the derivative of $x e^{y}+\cos (x y)$ at $(2,0)$ in the direction of $A=3 i-4 j$
17. Find the local extreme values of the function $f(x, y)=x y$.
18. Find the area enclosed by the lemniscate $r^{2}=4 \cos 2$
19. Evaluate $\iiint \frac{1}{x y z} d z d y d x$
20. Find the circulation of the field $\quad\left(\begin{array}{ll}x & y\end{array}\right)+x_{J}$ around the c 1 r $r(t)=\cos t+\sin j, 0 \quad t 2 \pi$.
21. Find the divergence of $\mathbf{F}=(\mathrm{x} 2-\mathrm{y}) \vec{i}\left(x y-y^{2}\right) ;$.

$$
(9 \times 1=4:
$$

Answer any five short essay questions.
22. Find the unit tangent vector, Principal unit normal vector, Binormal vector curvature and torsi at t for the curve $r(t)=3 \sin t \vec{i}+3 \cos t j+4 \mathbf{t} \mathbf{k}$.
23. Find the linearization of $f(x, y)={ }^{2}-x y+{ }^{1} \mathbf{y}^{2}+3$ at the point of $(3,2)$.
24. Find the angle between the surfaces $\mathbf{x}^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point $(2,-1,2)$.
25. Find the average value of $\mathbf{F}(x, y, z)=x y z$ over the cube bounded by the coordinate planes and the planes $x=2, y=2$ and $z=2$ in the first octant.
26. Show that $\mathbf{F}(\mathrm{ex} \cos \mathrm{y}+y z) i+(x z-e x \sin \mathrm{y}) 3+(x y+z) k$ is conservative and find a potential function for it.
27. Using Green's theorem evaluate the integral $y^{-3} y \underline{y d x}$ where C is the square cut from the first quadrant by the lines $\mathrm{x}=1$, and $\mathrm{y}=1$.
28. Find a parametrization of the cone $z=, \quad<\quad<z^{1}$.

$$
\times 2=
$$

Answer any two essay questions.
29. Find the points closest to the origin on the hyperbolic cylinder $x^{2}-z^{2}-1=0$.
30. Evaluate $\frac{{ }_{0}^{1-x}}{0} \sqrt{x}+\mathbf{y}(\mathbf{y} 2 x)^{2} d y d x$ by applying the transformations $\mathbf{u}=x+\mathbf{y}$ and $\mathbf{v}=\mathrm{y}-2$
31. State Divergence theorem. Verify Divergence theorem for the field $\mathbf{F}=x \boldsymbol{i}+\mathbf{y} \mathbf{j}+z k$ over the sphere $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=\mathrm{a} 2$.

