FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2011

(CCSS)

Mathematics-Core Course
 MM 5B 06-ABSTRACT ALGEBRA

Time : Three Hours
Maximum Weight: $\mathbf{3 0}$

> Questions from 1 to 12 are compulsory. Each has weight 114.

1. The smallest non abelian group has -_ elements.
2. The order of the identity element in any group G is
3. A cyclic group with only one generator can have at most __ elements.
4. Write the number of cosets of 5 Z in Z .
5. The Klein 4-group has bow many proper sub groups?
6. The total number of subgroups of Z_{12} is
7. State true or false. "A subgroup of a group is a left nset of itself'.
8. The field Z_{5} has how many zero divisors
9. How many unit elements are there in the ring
10. 'The alternating group A_{5} has how many elements ?
11. State true or false : Z is a sub field of Q.
12. Write the number of generators of the group Z under addition.

Short Answer Type Questions

Answer all questions.

13. Let \mathbf{G} be a group and suppose that $\left.\mathbf{a}^{*} b^{*} c=e \mathbf{V} \mathbf{a}, b, c \mathbf{E} \mathbf{G}\right)$. Show that $b^{*} c^{*} a=e$.
14. If G is an abelian group with identity e, then-all elements x of G satisfying $x^{2}=e$ form a sub group of G.
15. Prove that every. cyclic group is abelian.
16. Prove that ever permutation a of a finite set is a product of disjoint cycles.
17. Exhibit the left and right of the sub group $4 Z$ of Z.
18. Let ϕ be a homomorphism of a group G into a group G^{\prime}. If $\alpha \in G$, then prove that
19. Find the value of the product (11) $*(-4)$ in Z_{15}.
20. Prove that every field F is an Integral Domain.
21. Is \mathbf{Q} over \mathbf{R} a vector space ? Verify.

Short Essay Questions
 Answer any five questions.

22. Let * be defined on \mathbf{Q} by $\boldsymbol{a} \boldsymbol{b}=\frac{a b}{2}$ Show that $\left(\mathbf{Q}^{+},{ }^{*}\right)$ is an abelian group.
23. Show that intersection of sub groups H_{i} of a group G for $i E I$ is again a sub group of G. Whe about union of two sub groups?
24. Describe the symmetric group S_{3}.
25. Prove that every prime order group is cyclic.
26. Show that cancellation law holds in a ring R if and only if R has no zero divisors.
27. Define a vector space. Give an example.
28. Show that $\left\{1, x, x^{2}\right\}$ form a basis for $P_{2}(x)$, the collection of all polynomials of degree at most 2 .

Essay Question.

 Answer any two questions.29. (a) Define an abelian group.
(b) Describe Klein 4 -group V.
(c) Write all proper sub groups of V. Specific which are abelian
30. (a) Define the term orbit, cycle and transposition with respect to a permutation.
(b) Prove that any permutation of a finite set with at least two elements is a product transpositions.
(c) Define even and odd permutation. Prove that the product $(1,4,5,6) \cdot(2,1,5)$ is an odd permutation.
31. (a) State and prove Lagrange's theorem.
(b) Prove that the order of an element of a finite group divides the order of the group.
(c) Find the order of the element 2 in the group $\left(Z_{5},+\right)$.
