FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2013

(UG-CCSS)

Mathematics (Core Course)
 MM 5B 05-VECTOR CALCULUS

Time : Three Hours
Maximum : 30 weightage
I. Answer all the twelve questions :

1 Find the parametric equation of the line through the points $\mathbf{P}(-3,2,-3)$ and $\mathbf{Q}(1,-1,4)$.
2 Find the angle between the vectors $A=i-2 j-2 k, B=6 i+3 j+2 k$.
3 Find a vector perpendicular to both $\mathrm{A}=\mathbf{2 i}+j+k$ and $\overline{\mathrm{B}}=-\mathbf{4 i}+3 j+k$

4 Find the equation of the plane through $P_{0}(-3,0,7)$ and perpendicular to $n=5 i+2 j-k$.
5 The equation $x=y^{2}-{ }^{z^{2}}$ represents the surface of a \qquad
(a) Ellipsoid.
(b) Cylinder.
(c) Cone.
(d) Hyperbolic paraboloid.

6 Find the equation of the circular cylinder $4 x^{2}+4 y^{2}=9$ in cylindrical co-ordinates.
7 Find the unit tangent vector to the helix $\mathbf{r}(t)=\cos t i+\sin t j+t k$.

8 Find the domain and range of the function $w=\overline{x^{2}+y^{2}+z^{2}}$

9 Find $\lim _{\substack{(x, y) \rightarrow(1,1) \\ x \neq 1}}\left|\begin{array}{c}x y-y-2 \mathrm{x}+2 \\ x-1\end{array}\right|$

10 If $w=x^{2}+y^{2}-z+\sin t$ and $x+y=t$, find $\left(\frac{\partial w}{\partial y}\right)$ and

11 Find the gradient of $g(x, y, z)=e^{z} \quad$ in $\left(x^{2}+y^{2}\right)$
12 State the Fubini's theorem (first form).
(12 $\times 1 / 4=3$ weightage)
II. Answer all the nine questions :

13 Find the point where line $={ }_{3}^{8}+{ }^{2} t, y=-2 t, z=1+t$ intersects the plane $3 x+2 y+6 z=6$.

14 Find the spherical and cylindrical equation of the hemisphere $\mathbf{x}^{2}+y^{2}+(z-1)^{2}=1, z<1$.

15 Show that $\mathbf{u}(t)=\sin t i+\cos t j+\sqrt{3} k$ has a constant length and is orthogonal to its derivative.

16 Show that the function $\mathbf{f}(x, y, z)=2 z^{3}-3\left(x^{2}+y^{2}\right)$ z satisfies the Laplace's equation.

17 Find the derivative of $f(x, y)=x e^{y}+\cos (x y)$ at the point $(2,0)$ in the direction of $\mathbf{A}=3 \mathbf{i}-4 j$.

18 Find the saddle point if any of the function $f(x, y)=x^{2}+x y+3 x+2 y+5$.

19 Calculate $\iint_{\mathrm{R}} \frac{\sin }{\underline{x}} d$ A where R is the triangle in the $x y$ plane bounded by the x -axis, the line $y=x$ and the line $x=1$.

20 Find the work done by $\mathrm{F}=x y i+y j-y z k$ over the curve $\bar{r}(t)=t i+\dot{t} j+t k, 0<t \quad 1$.

21 Evaluate $\begin{aligned} & 11-z 2 \\ & \underset{\mathrm{O}}{\mathrm{f}} \underset{\mathrm{O}}{\mathrm{f}}\end{aligned} \mathrm{f} d x d y d z$.
(9 $\times 1=9$ weightage)
III. Answer any five questions from seven :

22 Find the unit tangent vector, normal vector and binormal for the curve

$$
\mathbf{F}(t)=(\cos t+t \sin t)+(\sin t-t \cos t) j+3 \mathbf{k} .
$$

23 Find the linearization of $f(x, y)=x^{2}-x y+{ }_{2}+3$ at the point $(3,2)$

24 Find the derivative of $f(x, y, z)=$ in $(2 x+3 y+6 z)$ at $p(-1,-1,1)$ in the direction of $A=2 i+3 j+6 k$.

25 Find the average value of $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=x^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$ over the cube in the first octant bounded by the co-ordinate planes and the planes $x=1, \mathrm{y}=1$ and $z=1$.

26 Show that $\mathrm{F}=(\mathrm{y}+z) i+(\mathrm{x}+z) j+(x+\mathrm{y}) k$ forms a conservative force field and find its potential function.

27 Apply Green's theorem to evaluate $\left(y^{2} d x+x^{2} d y\right)$ where C is the triangle bounded by $x=0, x+y 1, y=0$.

28 Integrate $g(x, y, z)=x y z$ over the surface of the cube cut-off by the first octant by $x=1, y=1$, $z=1$.

$$
(5 \times 2=10 \text { weightage })
$$

IV. Answer any two questions :

29 Find the local extreme values of the function $\mathrm{f}(x, y)=x y-x^{2}-y^{2}-2 x-2 y+4$.
30 Use Taylor's theorem for $f(x, y)$ to find a quadratic and cubic approximation off $(x, y)=x e^{y}$ at origin.

31 Use Stoke's theorem to evaluate $\mathrm{F} . d \bar{r}$ if $\mathrm{F}=x z i+x y j+3 \mathrm{x} z k$ where C is the boundary of the portion of the plane $2 \mathrm{x}+\mathrm{y}+\mathrm{z}=2$ is the first octant traversed in counterclockwise sense.

$$
\text { (2 } \times 4=8 \text { weightage) }
$$

