FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2013 (UG-CCSS)

Mathematics (Core Course)
MM 5B 08——IFFERENTIAL EQUATIONS

Time Three Hours
Maximum 30 Weightage

Part A

Answer all twelve questions.

1. State $f(x)=x \cos x$ is even or odd.
2. Solve $\frac{d y \underset{+}{\chi}}{d x}=0$.
3. Write the order of the differential equation $\frac{y}{d x}+2^{\prime} \frac{d y^{-}}{d x}{ }^{\circ} \quad \frac{d y}{d x}+y=0$.
4. Write the necessary condition for the differential equation $\mathrm{M}(x, y) d x+\mathrm{N}(x, y) d y=0$ to be exact.
5. Show that $(\mathrm{Ax}, \mathrm{By}) d x+(\mathrm{C} x, \mathrm{D} y) d y=0$ is exact if $\mathrm{B}=\mathrm{C}$.
6. Verify that $\sin x$ is a solution of $\frac{d y}{d x^{2}}+y \quad 0$.
7. Write the homogeneous equation of $\frac{d y}{d x^{\underline{\underline{z}}}} v \leadsto$
8. Laplace transform of t is
9. If $\mathrm{L}\{\mathrm{F}(t)\}=f(s)$, then $\mathrm{L}\left\{e^{\mathrm{F}}(t)\right\}=$
10. Find $\left(\mathrm{F}^{*} \mathrm{G}\right) t$ if $\mathrm{F}(t)=1, \mathrm{G}(t)=1$.
11. $\mathrm{L}\left\{\mathrm{e}^{\prime} \sin b t\right\}-$
12. Show that $\left(\mathrm{x}^{2}+y\right) d x+\left(y^{2}+x\right) d y=\mathbf{0}$ is exact.
($12 \mathrm{x}=3$ weightage)
13. Solve $\begin{array}{cc}d y & \overline{-y^{2}} \\ d x & 1-x^{2}\end{array}=0$
14. Define a homogeneous differential equation.
15. Find the integrating factor of $(1+x y) y d x+(1-x y) x d y=0$.
16. Determine $\mathbf{N}(\mathbf{x}, \mathbf{y})$ such that the equation $\left(\mathbf{x}^{3}+x y\right) d x+\mathrm{N}(x, y) d y=\mathbf{0}$ is exact.
17. Find the Laplace transform of $\cos \boldsymbol{a t}$.
18. Find $\left(\mathrm{F}^{*} \mathbf{G}\right) \boldsymbol{t}$ if $\mathrm{F}(t)=\boldsymbol{t}, \mathrm{G}(t)=\mathrm{e}^{\boldsymbol{t}}$.
19. Determine whether $\sin 7 x$ is periodic. If so find its fundamental period.
20. Find the Laplace transform of $2 e \quad \mathbf{3 x} \mathbf{2 t}$.
21. Find the Wronskian of $\sin x$ and $\cos x$.

Answer any five questions from seven.

23. Solve the initial value problem $\frac{\frac{d}{}^{2} y}{d x^{2}} \quad 6 \frac{d y}{d x}+25 y=0, y(0)=-3, \mathbf{y}^{\prime}(0)=-1$.
24. Transform the equation $u+2 \mathbf{u}^{\prime}+2 \mathrm{u}=0$ into a system of first order equation.
25. If $\{F(t)\}=\boldsymbol{f}(s)$ then prove that $\mathrm{L}\left\{e^{\text {at }} \mathrm{F}=\boldsymbol{f}(s-a)\right.$.
26. Find the inverse transform of ${ }_{s} \begin{aligned} & \underline{3 s}+7 \\ & 2 s-3\end{aligned}$.
27. Using Convolution property, find $\left.L\left|\frac{1}{s\left(s^{s}+a^{2}\right.}\right| \right\rvert\,$
28. Solve the boundary value problem $y^{\prime \prime}+2 y=0, y(0)=1, y(\pi)=0$.
($5 \times 2=10$ weightage)

Answer any two questions.
29. Find the integrating factor and hence solve

$$
x^{2} y d x-\left(x^{3}+y^{-}\right) d y=0
$$

30. Solve by the method of undetermined coefficients

$$
\begin{aligned}
& d^{2} y \\
& d x^{2} \\
& 2 d y
\end{aligned} \quad 3 y=2 e^{x}
$$

31. Solve by the method of variation of parameters

$$
\begin{aligned}
& d y \\
& d x^{2} \quad y^{-}=\tan x .
\end{aligned}
$$

