vt ages; of

wale

Reg. No.

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2013

(UG-CCSS)

Mathematics (Core Course)

MM 5B 08—DIFFERENTIAL EQUATIONS

Time Three Hours

Maximum 30 Weightage

Part A

Answer all twelve questions.

- 1. State $f(x) = x \cos x$ is even or odd.
- 2. Solve $\frac{dy}{dx} + \frac{x}{y} = 0$.
- 3. Write the order of the differential equation $\frac{y}{dx} + 2 \frac{d^2y}{dx^2} + y = 0.$
- 4. Write the necessary condition for the differential equation $\mathbf{M}(\mathbf{x}, \mathbf{y}) d\mathbf{x} + \mathbf{N}(\mathbf{x}, \mathbf{y}) d\mathbf{y} = 0$ to be exact.

5. Show that (Ax, By) dx + (Cx, Dy) dy = 0 is exact if B = C.

- 6. Verify that sin x is a solution of $\frac{dy}{dx^2} + y$ 0.
- 7. Write the homogeneous equation of $\frac{dy}{dx} v \sim$
- 8. Laplace transform of *t* is _____
- 10. Find (F * G) t if F(t) = 1, G(t) = 1.
- 11. L {e' $\sin bt$ } _____
- 12. Show that $(x^2 + y) dx + (y^2 + x) dy = 0$ is exact.

(12 x = 3 weightage)

Turn over

Answer all questions.

13. Solve $\frac{dy}{dx} = \frac{-y^2}{1-x^2} = 0$

- 14. Define a homogeneous differential equation.
- 15. Find the integrating factor of (1 + xy) ydx + (1 xy) xdy = 0.
- 16. Determine N (x, y) such that the equation $(x^3 + xy) dx + N(x, y) dy = 0$ is exact.
- 17. Find the Laplace transform of cos at.
- 18. Find (F * G) t if F(t) = t, $G(t) = e^{t}$.
- 19. Determine whether $\sin 7x$ is periodic. If so find its fundamental period.
- 20. Find the Laplace transform of 2e 3x 2t.
- 21. Find the Wronskian of sin x and cos x.

 $(9 \times 1 = 9 \text{ weightage})$

Answer any five questions from seven.

22. Solve $(x^2 \quad y^{2} \land \frac{dy}{dx} = xy.$

- 23. Solve the initial value problem $\frac{d^2y}{dx^2}$ $6\frac{dy}{dx} + 25y = 0$, y(0) = -3, y'(0) = -1.
- 24. Transform the equation u + 2u' + 2u = 0 into a system of first order equation.
- 25. If $\{F(t)\} = f(s)$ then prove that $L\{e^{at}F = f(s-a)$.
- 26. Find the inverse transform of $2\frac{3s+7}{s} \cdot \frac{2s-3}{2s-3}$.
- 27. Using Convolution property, find L $\left| \frac{1}{s(s^2 + a^2)} \right|$
- 28. Solve the boundary value problem y'' + 2y = 0, y(0) = 1, $y(\pi) = 0$.

 $(5 \times 2 = 10 \text{ weightage})$

Answer any two questions.

29. Find the integrating factor and hence solve

$$x^2 y \, dx - (x^3 + y) dy = 0.$$

30. Solve by the method of undetermined coefficients

$$\frac{d^2y}{dx^2} \geq \frac{dy}{dx} \quad 3y = 2e^{x}.$$

31. Solve by the method of variation of parameters

$$d^{y}$$

 dx^{2} $y^{= \tan x.}$

 $(2 \times 4 = 8 \text{ weightage})$