FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2014

 (U.G.-CCSS)
Core Course-Mathematics
 MM 5B 05-VECTOR CALCULUS

Time :Three Hours
Maximum : 30 Weightage
I. Answer all questions:

1 Plane through $\mathrm{P}_{\mathrm{o}}\left(x_{\mathrm{U}}, y_{\mathrm{v}}, z_{\mathrm{v}}\right)$ and normal to $\vec{m}=A i+\mathrm{B} j+\mathrm{C} k$ is \qquad
2 Find the parametric equation for the line through the points $P(-3,2,-3)$ and $Q(1,-1,4)$.
3 Vector equation for the line through $\mathrm{P}_{\mathrm{v}}\left(x_{\mathrm{u}}, y_{\mathrm{v}}, z_{\mathrm{v}}\right)$ and parallel to is $\mathrm{P}_{0} \mathrm{P}=$ \qquad
4 A vector function $r(t)$ is continuous at a point $t=\mathrm{t}_{\mathrm{O}}$ in its domain if ${ }_{t \rightarrow t_{0}}^{v} \vec{r}(t)=$

5 Domain of the function $\mathrm{w}=\sin (x y)$ is the entire plane. Then range $=$
$6 \lim _{(0, y)} 3 x^{2}-y^{2}+5 x^{2}+y^{2}+2$

7 Find - and $\overline{\partial y}$ if $f(x, y)=\left(x^{2} 1\right)(y+2)$
8 Find the gradient of $g(x, y)=y-x^{2}$ at $(-1,0)$.
9 The curl of a vector field $\mathrm{F}=\mathrm{M} i+\mathrm{N} j$ at the point (x, y) is \qquad
10 Curvature of a straight line is \qquad
11 Define Saddle point.
12 Examine whether F. $y i+(x+z) j-y k$ conservative.
II. Answer all nine questions

13 Find the angle between the planes
$3 x-6 y-2 z=15$ and $2 x+y-2 z=5$.
14 Find the spherical co-ordinate equation for the sphere

15 Show that $\vec{u}(t)=(\sin t) i+(\cos t) j+\sqrt{3} k$ is orthogonal to its derivative.

16 Find the equation for the plane through $P_{o}(0,2,-1)$ and normal to $n=3-2 j-k$
17 Find the acceleration of a moving particle at $t=1$ whose position vector is

18 Find the parametric equation for the line that is tangent to the curve

$$
(t)=(a \sin t) i+(a \cos t) j+b t \mathrm{~K} \text { at } t_{\mathrm{u}}=2 \mathrm{n}
$$

19 If $t_{0}=0$ find the arc length parameter along the helix $\vec{r}(t)(\cos t) i+(\sin t) j+t k$.

20 W rite the range of the function $f(\mathrm{x}, \mathrm{y})=x y$.
21 State Stoke's theorem.
III. Answer any five questions

22 Find T and N for the plane curve

$$
\vec{r}(t)=(2 t+3) i+\left(5-t^{-}\right) j
$$

23 Find the point where the line $x=1+2 t, y=1+5 t, z=3$ t intersects the plane $x+y+z=2$.

24 Find the distance from the point $S(1,1,5)$ to the line $L: x=1+t, y=3-t, z=2 t$.
25 Find the curvature for the space curve $F(t)=\left(\mathbf{e}^{\mathrm{t}} \boldsymbol{\operatorname { c o s }} \boldsymbol{t}\right) \boldsymbol{i}+\left(e^{t} \sin \boldsymbol{t}\right) \boldsymbol{j}+\mathbf{2 k}$
26 Calculate the outward flux of the field $F(x, y)=x i+y^{i} j$ across the square bounded by the lines $x= \pm 1, y= \pm 1$.

27 Evaluate $\int\left(\begin{array}{lll}x y & \mathbf{y} & z\end{array}\right) d z$ along the curve $\mathbf{r}(t)=2 t i+t j+(2-2 t) k, 05 t 1$.

28 Find the area enclosed by the lemiscate $r^{2}=4 \cos 20$

$$
\text { (} 5 \times 2=10 \text { weightage) }
$$

IV. Answer any two questions :

29 Find the plane determined by the intersecting lines :

$$
\begin{aligned}
& \mathrm{L}_{1}: x=-1+t, y=2+t, z=1-t,-\infty<t<\infty \\
& \mathrm{L}_{2}: x-1-4 s, y=1+2 s, z=2-2 s,-\infty<s<c o
\end{aligned}
$$

30 Find an upper bound for the magnitude of the error E in the approximation :

$$
f(x, y, z) \approx \mathrm{L}(x, y, z) \text { over the rectangle } \mathbf{R} . \text { Given } f(x, y, z)=x z-3 y z+2 \text { at } \mathbf{P}_{\mathrm{o}}(1,1,2) .
$$

31 Show that $\mathbf{F}=\left(e^{x} \cos y+y z\right) i+\left(x z-e^{x} \sin y\right) j+(x y+z) l e$ is conservative and find a potential function for it.

