~	24	79	Q
	44	10	O

(Pages: 4)

Name	•••••

Reg. No.....

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2017

(CUCBCSS-UG)

Core Course—Mathematics

MAT 2B 02—CALCULUS

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all the **twelve** questions. Each question carries 1 mark.

- 1. Find dy if $y = \frac{2x}{1+x^2}$.
- 2. A function with a continuous first derivative is said to be ———.
- 3. Suppose that $\int_{1}^{3} f(x) dx = 6$. Find $\int_{1}^{3} f(u) du$.
- 4. If f is smooth in [a, b] then the length of the curve y = f(x) from a to b is L = ----
- 5. Find the intervals in which the function f is increasing given f'(x) = x(x-1).
- 6. The radius r of a circle increases from $r_0 = 10m$ to 10.1m. Estimate the increase in the circle's area A by calculating dA.
- 7. Evaluate $\int_{0}^{1} \left(x^{2} + \sqrt{x}\right) dx.$
- 8. Write the sum without sigma notation and then evaluate the sum $\sum_{k=1}^{4} \cos k \pi$.
- 9. State Rolle's Theorem.
- 10. What are the critical points of f given $f'(x) = x^{-\frac{1}{3}}(x+2)$.

Turn over

- 11. Evaluate $\lim_{x\to\infty} \frac{\sin 2x}{x}$.
- 12. Find the linearization of $f(x) = \sqrt{1+x}$ at x = 0.

 $(12 \times 1 = 12 \text{ marks})$

Part B

Answer any **nine** questions. Each question carries 2 marks.

- 13. Find the absolute maximum and minimum values of $f(x) = -\frac{1}{x}$, $-2 \le x \le -1$.
- 14. Evaluate $\int_{0}^{\pi/4} \tan x \sec^2 x \, dx.$
- 15. Find the volume of the solid generated by revolving the region bounded by the line y = 0 and the curve $y = x x^2$.
- 16. Suppose that f is continuous and that $\int_{0}^{3} f(x) dx = 3$ and $\int_{0}^{4} f(x) dx = 7$. Find $\int_{4}^{3} f(x) dx$.
- 17. Find the function f(x) whose derivative is $\sin x$ and whose graph passes through the point (0, 2).
- 18. Find the average value of $f(x) = x^2 1$ on $(0, \sqrt{3})$.
- 19. Evaluate $\sum_{k=1}^{7} (-2k)$.
- 20. Find $\frac{dy}{dx}$ if $y = \int_{1}^{x^2} \cos t \ dt$.

- 21. Show that if f is continuous on $[a, b] a \neq b$ and if $\int_a^b f(x) dx = 0$ then f(x) = 0 at least once in [a, b].
- 22. Evaluate $\frac{d}{dt} \int_{0}^{t^{*}} \sqrt{u} \ du$.
- 23. Find the area between $y = \sec^2 x$ and $y = \sin x$ from 0 to $\frac{\pi}{4}$.
- 24. Express the solution of the following initial value problem as an integral:

Differential equation : $\frac{dy}{dx} = \tan x$

Initial condition : y(1) = 5.

 $(9 \times 2 = 18 \text{ marks})$

Part C

Answer any six questions.

Each question carries 5 marks.

- 25. Find the lateral surface area generated by revolving xy = 1, $1 \le y \le 2$ about the y-axis.
- 26. About how accurately should we measure the radius r of a sphere to calculate the surface area $S = 4\pi r^2$ within 1% of its true value.
- 27. Evaluate the length of the curve $x = \sqrt{1 y^2}$, $-\frac{1}{2} \le y \le \frac{1}{2}$.
- 28. Find the volume of the solid generated by revolving the region between the y-axis and the curve $x = \frac{2}{y}$, $1 \le y \le 4$ about the y-axis.
- 29. Find the asymptotes of the curve $y = \frac{x+3}{x+2}$.

- 30. Find the intervals on which the function $h(x) = -x^3 + 2x^2$ is increasing and decreasing.
- 31. Find the length of the curve $x = \sin y$, $0 \le y \le \pi$.
- 32. Find the area of the region enclosed by the curve $y = x^2 2$ and the line y = 2.
- 33. Find the value of local maxima and minima of $f(x) = x^2 4$, $-2 \le x \le 2$ and 2ay where they are assumed.

 $(6 \times 5 = 30 \text{ marks})$

Part D

Answer any **two** questions. Each question carries 10 marks.

- 34. Find the area of the surface generated by revolving the curve $y = 2\sqrt{x}$, $1 \le x \le 2$ about the x-axis.
- 35. State and prove the Fundamental Theorem of calculus.
- 36. Find the centre of mass of a thin plate of constant density δ covering the region bounded by the parabola $y = 4 x^2$ and below by the x-axis.

 $(2 \times 10 = 20 \text{ marks})$

~	247	790	A
	44	100	-A

1						
(P	็ฉ	Ø	0	2	•	4
14	6.4	-	0	•	۰	-

Name	è	•••••	•••••	•••••	•••••
Reg. 1	No			•••••	

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2017

(CUCBCSS—UG)

Core Course—Mathematics

MAT 2B 02—CALCULUS

(Multiple Choice Questions for SDE Candidates)

Time: 15 Minutes

Total No. of Questions: 20

Maximum: 20 Marks

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

MAT 2B 02—CALCULUS

(Multiple Choice Questions for SDE Candidates)

		/ \	The state of the s	and the second second	
1	Sunnaga	$f'(x) - 5x \times x$	and if $f(0) = 0$	thon f(2) -	_
1.	Suppose	$\int (x) - 0x \nabla x$	and if $f(0) = 0$), men / (5) =	

(A) 15.

(B) 15/2.

(C) 45/2.

(D) 45.

2. A differentiable function is always —

(A) Continuous.

(B) Not continuous.

(C) Integrable.

(D) Not integrable.

$$3. \quad \lim_{x \to \infty} \frac{2x+3}{5x+7} = ----$$

(A) 2/5.

(B) 5/2.

(C) 3/7.

(D) 7/3.

4. The formula for finding the sum of squares of first 'n' natural no's is ———.

- (A) $\frac{n(n+1)(2n+1)}{6}.$
- (B) $\frac{n(n-1)(2n-1)}{6}.$

(C) $\frac{n(n+1)}{2}$.

(D) $\frac{n(n-1)}{2}$.

5. If
$$\int_{1}^{2} f(x) dx = 5$$
, then $\int_{1}^{2} f(u) du = -$

(A) 20.

(B) 15.

(C) 5.

(D) 10.

6. Find
$$dy$$
, if $y = x^6 + 29x^2 + 3$.

(A)
$$x^5 + 29x + 3$$
.

(B)
$$6x^5 + 58x + 3$$
.

(C)
$$6x^5 + 29x + 3$$
.

(D)
$$6x^5 + 58x$$
.

	(A)	0, 1 and 2.	(B)	1 and 2.
	(C)	−1 and −2.	(D)	None of these.
8.	Function	ons with zero derivatives are ——		•
	(A)	Continuous.	(B)	Differentiable
	(C)	Constant.	(D)	All the above.
9.	Expres	s 1 + 2 + 4 + 8 + 16 + 32 in sigma n	otatio	n.
		6		6
	(A)	$\sum_{1}^{6} 2^{n}.$	(B)	$\sum_{1}^{6} 2^{n-1}$.
	(C)	$\sum_{n=0}^{5} 2^{n-1}$.	(D)	$\sum_{n=0}^{5} 2^{n}.$
		0		0
1		4		
10.	Suppos	se that $\int_{2}^{4} f(x) dx = 10$, find $\int_{2}^{4} -f(x) dx = 10$	dx	
	(A)	10.	(B)	-10.
	(C)	20.	(D)	-20.
11.	Find th	ne liberization of $f(x) = x^3$ at $x = 2$.		
	(A)	2(6x-7).	(B)	2(6x + 7).
	(C)	0.	(D)	3x.
12.	One No	ewton-metre work is called ———		
	(A)	Newton-Metre.	(B)	Joule.
	(C)	Org.	(D)	None of these
13.	Let F(t) = 2(t+1) + 3. Evaluate F at the	input	value $x + 2$.
	(A)	2x + 3.	(B)	2x + 11.
	(C)	2x+9.	(D)	2x + 7.

7. What are the critical Points of f when f'(x) = (x-1)(x-2).

- - (A) Norm.

(B) Tag.

(C) Partition.

- (D) Uniform Norm.
- 15. $\int_{3}^{3} f(x) dx = ----$
 - (A) 3.

(B) f(3).

(C) 0.

- (D) f(0).
- 16. Area × height = -----
 - (A) Volume.

(B) Surface area.

(C) Perimeter.

- (D) None of these.
- 17. Find the average value of $f(x) = 2 x^2$ on [0, 2].
 - (A) 2.

(B) -2.

(C) 4.

- (D) None of these.
- 18. $\frac{d}{dx}(\cos x) = ---$
 - (A) $\sin x$.

(B) $-\sin x$.

(C) $-\cos x$.

- (D) $-\csc x \cdot \cot x$.
- $19. \quad \frac{d}{dy}\left(x^2+x+1\right) = ----$
 - (A) 2x + 1.

(B) 2y + 1.

(C) 0.

- (D) 1.
- 20. Evaluate $\int_{-4}^{-1} \frac{\pi}{2} dx = ----$
 - (A) $\frac{\pi}{2}$.

(B) $\frac{3\pi}{2}$

(C) $-\frac{3\pi}{2}$.

(D) $-\frac{\pi}{2}$.