SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2017
 (CUCBCSS-UG)

Core Course-Mathematics
MAT 2B 02-CALCULUS
Time : Three Hours

Maximum : 80 Marks

Part A

Answer all the twelve questions.
Each question carries 1 mark.

1. Find $d y$ if $y=\frac{2 x}{1+x^{2}}$.
2. A function with a continuous first derivative is said to be \qquad
3. Suppose that $\int_{1}^{3} f(x) d x=6$. Find $\int_{1}^{3} f(u) d u$.
4. If f is smooth in $[a, b]$ then the length of the curve $y=f(x)$ from a to b is $\mathrm{L}=$ \qquad
5. Find the intervals in which the function f is increasing given $f^{\prime}(x)=x(x-1)$.
6. The radius r of a circle increases from $r_{0}=10 \mathrm{~m}$ to 10.1 m . Estimate the increase in the circle's area A by calculating $d \mathrm{~A}$.
7. Evaluate $\int_{0}^{1}\left(x^{2}+\sqrt{x}\right) d x$.
8. Write the sum without sigma notation and then evaluate the sum $\sum_{k=1}^{4} \cos k \pi$.
9. State Rolle's Theorem.
10. What are the critical points of f given $f^{\prime}(x)=x^{-1 / 3}(x+2)$.
11. Evaluate $\lim _{x \rightarrow \infty} \frac{\sin 2 x}{x}$.
12. Find the linearization of $f(x)=\sqrt{1+x}$ at $x=0$.

$$
(12 \times 1=12 \text { marks })
$$

Part B

Answer any nine questions.
Each question carries 2 marks.
13. Find the absolute maximum and minimum values of $f(x)=-\frac{1}{x},-2 \leq x \leq-1$.
14. Evaluate $\int_{0}^{\pi / 4} \tan x \sec ^{2} x d x$.
15. Find the volume of the solid generated by revolving the region bounded by the line $y=0$ and the curve $y=x-x^{2}$.
16. Suppose that f is continuous and that $\int_{0}^{3} f(x) d x=3$ and $\int_{0}^{4} f(x) d x=7$. Find $\int_{4}^{3} f(x) d x$.
17. Find the function $f(x)$ whose derivative is $\sin x$ and whose graph passes through the point (0,2).
18. Find the average value of $f(x)=x^{2}-1$ on $(0, \sqrt{3})$.
19. Evaluate $\sum_{k=1}^{7}(-2 k)$.
20. Find $\frac{d y}{d x}$ if $y=\int_{1}^{x^{2}} \cos t d t$.
21. Show that if f is continuous on $[a, b] a \neq b$ and if $\int_{a}^{b} f(x) d x=0$ then $f(x)=0$ at least once in $[a, b]$.
22. Evaluate $\frac{d}{d t} \int_{0}^{t^{4}} \sqrt{u} d u$.
23. Find the area between $y=\sec ^{2} x$ and $y=\sin x$ from 0 to $\frac{\pi}{4}$.
24. Express the solution of the following initial value problem as an integral :

$$
\begin{array}{ll}
\text { Differential equation } & : \frac{d y}{d x}=\tan x \\
\text { Initial condition } & : y(1)=5 .
\end{array}
$$

Part C

Answer any six questions.
Each question carries 5 marks.
25. Find the lateral surface area generated by revolving $x y=1,1 \leq y \leq 2$ about the y-axis.
26. About how accurately should we measure the radius r of a sphere to calculate the surface area $S=4 \pi r^{2}$ within 1% of its true value.
27. Evaluate the length of the curve $x=\sqrt{1-y^{2}},-\frac{1}{2} \leq y \leq \frac{1}{2}$.
28. Find the volume of the solid generated by revolving the region between the y-axis and the curve $x=\frac{2}{y}, 1 \leq y \leq 4$ about the y-axis.
29. Find the asymptotes of the curve $y=\frac{x+3}{x+2}$.
30. Find the intervals on which the function $h(x)=-x^{3}+2 x^{2}$ is increasing and decreasing.
31. Find the length of the curve $x=\sin y, 0 \leq y \leq \pi$.
32. Find the area of the region enclosed by the curve $y=x^{2}-2$ and the line $y=2$.
33. Find the value of local maxima and minima of $f(x)=x^{2}-4,-2 \leq x \leq 2$ and $2 a y$ where they are assumed.

$$
(6 \times 5=30 \mathrm{marks})
$$

Part D

Answer any two questions.

Each question carries 10 marks.
34. Find the area of the surface generated by revolving the curve $y=2 \sqrt{x}, 1 \leq x \leq 2$ about the x-axis.
35. State and prove the Fundamental Theorem of calculus.
36. Find the centre of mass of a thin plate of constant density δ covering the region bounded by the parabola $y=4-x^{2}$ and below by the x-axis.

$$
(2 \times 10=20 \text { marks })
$$

