C 31126

(Pages : 3)

Name.....

Reg. No.....

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2017

(CUCBCSS-UG)

Mathematics

MAT 3B 03-CALCULUS AND ANALYTIC GEOMETRY

Time : Three Hours

Maximum : 80 Marks

Part A (Objective Type)

Answer all twelve questions.

1. The product rule for natural logarithm is _____.

- $2. \quad \lim_{x \to 0} \frac{3x \sin x}{x} = -----$
- 3. The Hyperbolic cosecant is defined as -
- 5. The series $\sum_{n=1}^{\infty} n^2$ diverges because —
- 6. Suppose that $a_n > 0$ and $b_n > 0$ for all $\ge N$. If $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges then
- 7. The first two terms in the Maclaurin series expansion of $f(x) = xe^x$ is _____
- 8. The first two terms in the expansion of $f(x) = \frac{1}{3}x\cos x$ is ————.
- 9. The remainder of order n of $R_n(x)$ in Taylor's Formula is ————.
- 10. The eccentricity of the conic section $r = \frac{6}{2 + \cos \theta}$ is ______.
- 11. The standard form of Hyperbola if e = 3 and vertices $(0, \pm 1)$ is —
- 12. The foci of ellipse . $9x^2 + 10y^2 = 90$ is _____

 $(12 \times 1 = 12 \text{ marks})$

Turn over

Part B (Short Answer Type)

Answer any **nine** questions.

- 13. Define Hyperbolic function and Exponential function.
- 14. Define natural logarithm. Give examples.
- 15. Find $\lim_{x\to 0} + \sqrt{x}$ in x.
- 16. Let $\sum a_n \sum c_n$ and $\sum d_n$ be series with non negative terms and suppose that for some integer N, $d_n \leq a_n \leq c_n$, $\forall n \geq N$. Then write the conditions for which the series $\sum a_n$ converges and diverges ?
- 17. Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n}{n^3}$ converges or diverges ?
- 18. Determine whether the Alternating series $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + 1}$ converges or diverges ?
- 19. Define Power series representation of a function about the point x = a.
- 20. Find the power series representation of $f(x) = \sin x$ about x = 0.
- 21. Define the radius of convergence of a power series.
- 22. Define eccentricity *e* of a conic section. Give examples.
- 23. Write the polar equation of an ellipse.
- 24. Sketch the circle $r = 6 \sin \theta$.

$(9 \times 2 = 18 \text{ marks})$

Part C (Short Answer Type)

Answer any six questions.

25. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$. converge or diverge?

26. Investigate the convergence of the series $\sum_{n=1}^{\infty} \frac{2^n + 5}{3^n}$.

27. Determine whether the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n \cdot 3^n}$ converge or diverge ?

28. Expand $f(x) = x^4 + x^2 + 1$ as Taylor series about a point a = -2.

29. Find the radius and interval of convergence of the power series $\sum_{n=0}^{\infty} x^n$.

30. Discuss about the convergence of Taylor series. Give examples.

31. Find the eccentricity and directrix of the parabola $r = \frac{25}{10-5\cos\theta}$. Also sketch the conic.

32. Identify the conic section and hence find the centre, vertex, foci, asymptotes of $x^2 + y^2 - 2x - 2y = 0$.

33. Find the polar equation of : (i) $r \sin \theta = 2, e = 1/2$; (ii) $r \sin \theta = -6, e = 1/3$.

 $(6 \times 5 = 30 \text{ marks})$

Part D (Essay Type)

Answer any two questions.

34. Determine whether the series

(i) $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n^2} \right)$ converge ?

(ii) Does the series $\sum_{n=1}^{\infty} \frac{(n+1)(n+2)}{n!}$ converge ?

35. Find the values of x for which the replacement for $\sin x$ with an error of magnitude no greater

than 3×10^{-4} is possible where $\sin x = x - \frac{x^3}{3!} + \dots$

36. Describe about polar co-ordinates and polar equation of a conic. Sketch the region defined by the polar co-ordinate inequalities

(i)
$$0 \le r \le 6 \cos \theta$$
.

(ii) $-4\sin\theta \leq r \leq 0$.

 $(2 \times 10 = 20 \text{ marks})$