\qquad
\qquad
THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2017
(CUCBCSS-UG)
Mathematics
MAT 3B 03-CALCULUS AND ANALYTIC GEOMETRY
Time : Three Hours
Maximum : 80 Marks

Part A (Objective Type)

Answer all twelve questions.

1. The product rule for natural logarithm is \qquad
2. $\lim _{x \rightarrow 0} \frac{3 x-\sin x}{x}=\square$.
3. The Hyperbolic cosecant is defined as \qquad
4. Let $\left\{a_{n}\right\}$ be a sequence of real numbers. If $a_{n} \rightarrow \mathrm{~L}$ and if f is a function that is continuous at L and defined at all a_{n}, then \qquad
5. The series $\sum_{n=1}^{\infty} n^{2}$ diverges because -
6. Suppose that $a_{n}>0$ and $b_{n}>0$ for all $\geq N$. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$ and $\sum b_{n}$ converges then
7. The first two terms in the Maclaurin series expansion of $f(x)=x e^{x}$ is \qquad
8. The first two terms in the expansion of $f(x)=\frac{1}{3} x \cos x$ is \qquad
9. The remainder of order n of $\mathrm{R}_{n}(x)$ in Taylor's Formula is \qquad
10. The eccentricity of the conic section $r=\frac{6}{2+\cos \theta}$ is
11. The standard form of Hyperbola if $e=3$ and vertices $(0, \pm 1)$ is \qquad
12. The foci of ellipse $.9 x^{2}+10 y^{2}=90$ is \qquad

Part B (Short Answer Type)

Answer any nine questions.
13. Define Hyperbolic function and Exponential function.
14. Define natural logarithm. Give examples.
15. Find $\lim _{x \rightarrow 0}+\sqrt{x}$ in x.
16. Let $\sum a_{n} \sum c_{n}$ and $\sum d_{n}$ be series with non negative terms and suppose that for some integer $\mathrm{N}, d_{n} \leq a_{n} \leq c_{n}, \forall n \geq \mathrm{N}$. Then write the conditions for which the series $\sum a_{n}$ converges and diverges?
17. Determine whether the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n^{3}}$ converges or diverges?
18. Determine whether the Alternating series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n^{2}+1}$ converges or diverges ?
19. Define Power series representation of a function about the point $x=a$.
20. Find the power series representation of $f(x)=\sin x$ about $x=0$.
21. Define the radius of convergence of a power series.
22. Define eccentricity e of a conic section. Give examples.
23. Write the polar equation of an ellipse.
24. Sketch the circle $r=6 \sin \theta$.

Part C (Short Answer Type)

Answer any six questions.
25. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{2^{n}-1}$. converge or diverge?
26. Investigate the convergence of the series $\sum_{n=1}^{\infty} \frac{2^{n}+5}{3^{n}}$.
27. Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n \cdot 3^{n}}$ converge or diverge ?
28. Expand $f(x)=x^{4}+x^{2}+1$ as Taylor series about a point $a=-2$.
29. Find the radius and interval of convergence of the power series $\sum_{n=0}^{\infty} x^{n}$.
30. Discuss about the convergence of Taylor series. Give examples.
31. Find the eccentricity and directrix of the parabola $r=\frac{25}{10-5 \cos \theta}$. Also sketch the conic.
32. Identify the conic section and hence find the centre, vertex, foci, asymptotes of $x^{2}+y^{2}-2 x-2 y=0$.
33. Find the polar equation of : (i) $r \sin \theta=2, e=1 / 2$; (ii) $r \sin \theta=-6, e=1 / 3$.

$$
(6 \times 5=30 \mathrm{marks})
$$

Part D (Essay Type)

Answer any two questions.
34. Determine whether the series
(i) $\quad \sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n^{2}}\right)$ converge ?
(ii) Does the series $\sum_{n=1}^{\infty} \frac{(n+1)(n+2)}{n!}$ converge ?
35. Find the values of x for which the replacement for $\sin x$ with an error of magnitude no greater than 3×10^{-4} is possible where $\sin x=x-\frac{x^{3}}{3!}+$
36. Describe about polar co-ordinates and polar equation of a conic. Sketch the region defined by the polar co-ordinate inequalities
(i) $0 \leq r \leq 6 \cos \dot{\theta}$.
(ii) $-4 \sin \theta \leq r \leq 0$.

$$
(2 \times 10=20 \text { marks })
$$

