\qquad
Reg. No.
FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2017 (CUCBCSS-UG)

Mathematics
MAT 4B 04-THEORY OF EQUATIONS, MATRICES AND VECTOR CALCULUS
Time: Three Hours
Maximum : 80 Marks

Section A

Answer all questions.

1. If $2+\sqrt{3}$ is a root of $x^{4}-2 x^{3}-22 x^{2}+62 x-15=0$, without solving the equation completely, state the other root.
2. If $\alpha, \beta, \gamma \ldots$ are the roots of $f(x)=0$, then what is the equation whose roots are $-\alpha,-\beta,-\gamma \ldots$?
3. If α and β are the roots of $l x^{2}+m x+n=0$ find $\alpha^{2}+\beta^{2}$.
4. Remove the second term from the equation $x^{3}-6 x^{2}+4 x-7=0$.
5. What is the rank of a non-singular matrix of order n ?
6. Find the row reduced Echelon form of the matrix $A=\left[\begin{array}{lll}1 & 2 & -3 \\ 2 & 5 & -4\end{array}\right]$.
7. Find the characteristic root of $\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$.
8. State Cayley-Hamilton theorem.
9. Fill in the blanks :

The characteristic roots of a diagonal matrix are the same as its \qquad
10. Find a vector parallel to the line of intersection of the planes $3 x-6 y-2 z=15,2 x+y-2 z=5$.
11. Find a Cartesian equation for the surface $z=r^{2}$ and identify the surface.
12. Find the unit tangent vector of :

$$
r(t)=(2 \cos t) i+(2 \sin t) j+\sqrt{5} t k
$$

Section B

Answer all questions.

13. If α, β, γ are the roots of $x^{3}-x-1=0$, find the equation whose roots are $\frac{1+\alpha}{1-\alpha}, \frac{1+\beta}{1-\beta}, \frac{1+\gamma}{1-\gamma}$.
14. Solve $x^{4}-8 x^{3}+14 x^{2}+8 x-15=0$, given that the roots are in A.P.
15. Form an equation whose roots are increased by 2 of the equation $2 x^{3}+3 x^{2}-x-1=0$.
16. Find the rank of the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5\end{array}\right]$.
17. Compute the inverse of $\left[\begin{array}{lll}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{array}\right]$.
18. State Sylvestee's Law of Nullity.
19. Show the characteristic roots of a Hermitian matrix are all real.
20. Find an equation for the circular cylinder $4 x^{2}+4 y^{2}=9$ in cylindrical co-ordinates.
21. Find the principal unit normal vector N for a curve $r(k)=(2 t+3) i+\left(5-t^{2}\right) j$.

$$
(9 \times 2=18 \text { marks })
$$

Section C

Answer any six questions.
22. Find the rational roots of the equation $2 x^{3}-3 x^{2}-11 x+6=0$.
23. Solve the equation $x^{3}-7 x^{2}+36=0$, given that the difference between two of its roots is 5 .
24. Solve the reciprocal equation $x^{4}-10 x^{3}+26 x^{2}-10 x+1=0$.
25. Reduce to the normal form and find the rank of $\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{array}\right]$.
26. Obtain the row reduced echelon form to find the rank of $\left[\begin{array}{rrrr}1 & 2 & -1 & 4 \\ 2 & 4 & 3 & 5 \\ -1 & -2 & 6 & -7\end{array}\right]$.
27. Solve the system of equations:

$$
\begin{array}{r}
x+3 y-2 z=0 \\
2 x-y+4 z=0 \\
x-11 y+14 z=0
\end{array}
$$

28. Find the characteristic equation of the matrix $A=\left[\begin{array}{rrr}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and verify Cayley-Hamilton theorem.
29. The vector $r(t)=(2 \cos t) i+(3 \sin t) j+4 t k$ gives the position of a moving body at time t. Find the body's speed and acceleration. When $t=\pi / 2$ find speed.
30. Find curvature for the helix :
$r(t)=(a \cos t) i+(a \sin t) j+b t k ; a, b \geq 0, a^{2}+b^{2} \neq 0$.
$(6 \times 5=30$ marks $)$

Section D

Answer any two questions.
31. (a) Discuss the nature of roots of the equation: $x^{9}+5 x^{8}-x^{3}+7 x+2=0$ using Descarte's rule of signs.
(b) Solve $6 x^{6}-25 x^{5}+31 x^{4}-31 x^{2}+25 x-6=0$, which is a reciprocal equation of second type.
32. (a) Find characteristic vectors of the matrix $\left[\begin{array}{rrr}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$ corresponding to any one characteristic root.
(b) Obtain the inverse of the above matrix using Cayley-Hamilton theorem.
33. (a) Find the length of the indicated portion of the curve :

$$
r(t)=t i+\frac{2}{3} t^{3 / 2} k ; 0 \leq t \leq 8 .
$$

(b) Show that the curvature of a circle of radius a is $\frac{1}{a}$.

$$
(2 \times 10=20 \text { marks })
$$

