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Section A 

Answer all the twelve questions. 

Each question carries 1 mark. 

1. True or False : Every binary operation on a set consisting of a single element is both commutative 

and associative., 

2. Describe the isomorphism from <Z +> into<nZ+>. 

3. Find the order of the cyclic subgroup of Z4  generated by 3. 

4. Determine whether the set of all invertible n x n real matrices with determinant -1 is a subgroup 

of GL (n, R). 

5. Determine whether the function f :R R defined by f (x) = eX  is a permutation of R . 

6. Write the orbits of the identity permutation, i on a set A 

7. True or false : Every finite group contains an element of every order that divides the order of the 

group. 

8. Find all orbits of the permutation a : Z -+ Z where a (n) = n + 1. 

9. Find all units in the ring Z4. 

10. Find the characteristics of the ring Z3  x 37Z. 

11. How many solutions, does the equation x2  - 5x + 6 - 0 have Z7  ? 

12. Find the number of elements in the set {a E S5  / a (2) = 5) ? 

(12 x 1 = 12 marks) 
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Section B 

Answer any ten out of fourteen questions. 

Each question carries 4 marks. 

13. Define isomorphism of algebraic structures. Determine whether the function 4 : < Q, + > —> < Q, + > 

x 
where 4) (x) =

2  x E Q is an isomorphism. 

14. Define a group. Is the set (11+ of positive rational numbers under multiplication a group. Justify 

your answer ? 

15. Let G be a group and a be a fixed element of G. Show that Ha  = tx E G : xa = ax) is a subgroup of 

G. 

16. Prove that an infinite cyclic group has exactly two generators. 

(1 2 3 4 5 6 7 81 
17. Express the permutation 	6 4 1 8 2 5 7) as a product of disjoint cycles and then as a 

product of transpositions. 

18. Find all generators of Z6, Z8  and Z20. 

19. If A is any set and a is a permutation of A, show that the relation ' ' defined on A by a - b if and 

only if b = an (a), for some n E Z, a, b E A is an equivalence relation. 

20. Let H be a subgroup of a group G, and let a E G. Define the left and right cosets of H containing 

a. Exhibit all left and right cosets of the subgroup 4Z of 2 Z. 

21. Prove that a group homomorphism : G G' is a one-one map if and only if Ker (4)) = {e). 

22. Define Ring. Give an example. 

23. Find all solutions of the equation x3  - 2x2  - 3x = 0 in Z12 . 

24. Define characteristic of a ring. Find the characteristic of the ring Z3  x 3Z and Z3  x 7L4 . 

25. Show that the intersection of two normal subgroups of a group is a normal subgroup. 

26. If R is a ring such that a2  = a E R. Prove that IR is a commutative ring. 

(10 x 4 = 40 marks) 
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Section C 

Answer any six out of nine questions. 
Each question carries 7 marks. 

27. Let G be a set consisting of ordered pairs (a, b) such that a, b are real and a # 0. A binary operation 

* is defined on G by (a, b) * (c, d) = (ac, be + d). Prove that G is a group under *. Is G abelian ? 

Justify. 

28. Show that a nonempty subset H of a group G is a subgroup of G if and only if ab-1  E H, V a, b E H. 

29. Let G and G' be groups and let (I) : G -+ G' be a one-one function such that (I) (xy) =4) (x) 4>  (y) for 

all x, y e G. Prove that 4>  [G] is a subgroup of G' and (I) is an isomorphism of G with 4  [G]. 

30. Define abelian group. Prove that a group G is abelian if every element except the identity e is of 
order 2. 

31. Show that the set of all permutations on three symbols forms a finite non-abelian group S3  of 
order 6 with respect to permutation multiplication. 

32. Let (ID : G --> G' be a group homomorphism and let H = Ker (4>). For a E G, prove that the 

set {x E G / (I) (x) 4  (a)} is the left coset all of H. 

33. Show that a2  - b2  = (a + b) (a - b) for all a, b in a ring if and only if i  is commutative. 

34. Show that the characteristics of an integral domain D must be either 0 or a prime p. 

35. Describe the field of quotients of an integral domain. 

(6 x 7 = 42 marks) 

Section D 

Answer any two out of three questions. 

Each question carries 13 marks. 

36. (a) Let H be a subgroup of a group G. For a, b e G , let a - b if and only if ab-1  e H. Show that - 

is an equivalence relation on G. 	 (6 marks) 

(b) Prove that a subgroup H of a group G is normal in G if and only if each left coset of H in G is 

a right coset of H in G. 	 (7 marks) 

Turn over 



4 	 C 30306 

37. (a) Prove that no permutation in Sn  can be expressed both as a product of an even number of 

transpositions and as a product of an odd number of transpositions. 	 (7 marks) 

(b) Prove that a subgroup of a cycle group is cyclic. 	 (6 marks) 

38. (a) Show that the order of an element of a finite group divides the order of the group. 

(7 marks) 

(b) Prove that every finite integral domain is a field. 

(6 marks) 

[2 x 13 = 26 marks] 
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MAT 5B 06—ABSTRACT ALGEBRA 

(Multiple Choice Questions for SDE Candidates) 

1. Which of the following is a non-abelian group with the property that each proper subgroup is 

abelian ? 

(A) S3. 	 (B) Z8. 

(C) S5. 	 (D) None of these. 

2. Let G be a cyclic group of order 6. Then the number of g E G such that G = < g > is : 

(A) 5. 	 (B) 3. 

(C) 2. 	 (D) 4. 

3. If a, b are elements of a group G of order m then order of ab and ba are : 

(A) Same. 	 (B) Equal to m. 

(C) Unequal. 	 • 	(D) None of these. 

4. How many elements are there on the cyclic subgroup of Z30 generated by 25 ? 

(A) 3. 	 (B) 6. 

(C) 5. 	 (D) None of these. 

5. If a is a generator of a cyclic group G, then : 

(A) a2  is a generator. 	 (B) a-1  is a generator. 

(C) G has no other generators. 	(D) Every subgroup of G is generated by a. 

6. The set of real numbers the operation addition is 	 

(A) Not a group. 	 (B) Abelian but not cyclic. 

(C) Not Abelian but cyclic. 	 (D) A group but not abelian. 

7. Let G be a group and let a * b * c = e for a, b, c E G. Then b * c * a equals : 

(A) a. 	 (B) e. 

(C) b, 	 (D) None of these. 
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8. Which of the following set, addition is not a binary operation ? 

(A) Complex numbers. 	 (B) Real numbers. 

(C) Non zero real numbers. 	 (D) Integers. 

9. Which of the following are true ? 

(1) Group may have more than one identity element. 

(2) Any two groups of three elements are isomorphic. 

(3) Every group of at most three elements is abelian. 

(A) 2 and 3. 	 (B) 1 and 2. 

(C) 1 and 3. 	 (D) All. 

10. The order of 2 in the group (Z, + ) .where Z is the set of integers is 

(A) 0. 	 (B) 4. 

(C) Not defined. 	 (D) Infinity. 

11. Which of the following is an even permutation ? 

ri 	2 3 4 5 6 7 8 (1 	2 	3 	4 5 6 7 8 
(A) (3 	4 5 1 6 2 1 8 • (B) 2 	1 	4 	5 3 7 8 6 • 

(1 	2 3 4 5 6 7 8 
(C) O. 	4 3 5 2 6 8 7 • (D) 	None of these. 

12. Cayley's theorem is : 

(A) Order of the subgroup divides the order of the group. 

(B) Every group is isomorphic to a group of permutations. 

(C) Every group is isomorphic some cyclic group. 

(D) Every group of prime order is cyclic. 

Turn over 
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13. The number of cosets of the subgroup 3Z in (Z, +) is 	 

(A) 2. 	 (B) 3. 

(C) Infinite. 	 (D) Cannot be determined. 

14. The cyclic subgroup of Z24  generated by 18 has order 	 

(A) 4. 	 (B) 6. 

(C) 9. 	 (D) None of these. 

15. In a non-abelian group the element a has order 108. Then the order of a 12 is : 

(A) 54. 	 (B) 27. 

(C) 18. 	 (D) 9. 

16. Which of the following is true ? 

(A) Every homomorphism is a one to one map. 

(B) A homomorphism may have an empty kernel. 

(C) For any two groups G and K, there exists a homomorphism of G into K. 

(D) For any two groups G and K, there exists an isomorphism of G onto X. 

17. If G is an infinite cyclic group, then how many generators are there for the group G ? 

(A) Exactly two. 	 (B) At least two. 

(C) Infinitely many. 	 (D) Only one. 

18. The set of non zero real numbers the operation addition is 	 

(A) Not a group. 	 (B) Abelian but not cyclic. 

(C) Not Abelian but cyclic. 	 (D) A group but not abelian. 

19. The set M2  (R) of all 2 x 2 matrices with real entries have 	 

(A) No zero divisors. 	 (B) Only two Zero devisors. 

(C) Infinite number of zero divisors. (D) None of these. 

20. Let Z be the set of integers, then (Z, +, x ) is not a 	 

(A) Field. 	 (B) Integral domain. 

(C) Commutative ring. 	 (D) None of these. 
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