(Pages: 4)
Name \qquad
Reg. No.
FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2017

(CUCBCSS—UG)
Mathematics
MAT 5B 06-ABSTRACT ALGEBRA
Maximum : 120 Marks

Time : Three Hours

Section A

Answer all the twelve questions.
Each question carries 1 mark.

1. True or False : Every binary operation on a set consisting of a single element is both commutative and associative.,
2. Describe the isomorphism from $\left\langle\mathbb{Z}_{3}+>\right.$ into $<n \mathbb{Z}_{\text {, }}+>$.
3. Find the order of the cyclic subgroup of \mathbb{Z}_{4} generated by 3 .
4. Determine whether the set of all invertible $n \times n$ real matrices with determinant -1 is a subgroup of $\operatorname{GL}(n, \mathbb{R})$.
5. Determine whether the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=e^{x}$ is a permutation of \mathbb{R}.
6. Write the orbits of the identity permutation, i on a set A
7. True or false : Every finite group contains an element of every order that divides the order of the group.
8. Find all orbits of the permutation $\sigma: \mathbb{Z} \rightarrow \mathbb{Z}$ where $\sigma(n)=n+1$.
9. Find all units in the ring \mathbb{Z}_{4}.
10. Find the characteristics of the ring $\mathbb{Z}_{3} \times 3 \mathbb{Z}$.
11. How many solutions, does the equation $x^{2}-5 x+6-0$ have \mathbb{Z}_{7} ?
12. Find the number of elements in the set $\left\{\sigma \in S_{5} / \sigma(2)=5\right\}$?

$$
(12 \times 1=12 \text { marks })
$$

Section B

Answer any ten out of fourteen questions. Each question carries 4 marks.

13. Define isomorphism of algebraic structures. Determine whether the function $\phi:<\mathbb{Q},+>\rightarrow<\mathbb{Q},+>$ where $\phi(x)=\frac{x}{2}, x \in \mathbb{Q}$ is an isomorphism.
14. Define a group. Is the set \mathbb{Q}^{+}of positive rational numbers under multiplication a group. Justify your answer?
15. Let G be a group and a be a fixed element of G . Show that $\mathrm{H}_{a}=\{x \in \mathrm{G}: x a=\alpha x\}$ is a subgroup of G.
16. Prove that an infinite cyclic group has exactly two generators.
17. Express the permutation $\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 1 & 8 & 2 & 5 & 7\end{array}\right)$ as a product of disjoint cycles and then as a product of transpositions.
18. Find all generators of $\mathbb{Z}_{6}, \mathbb{Z}_{8}$ and \mathbb{Z}_{20}.
19. If A is any set and σ is a permutation of A, show that the relation' \sim ' defined on A by $a \sim b$ if and only if $b=\sigma^{n}(a)$, for some $n \in \mathbb{Z}, a, b \in \mathrm{~A}$ is an equivalence relation.
20. Let H be a subgroup of a group G , and let $a \in \mathrm{G}$. Define the left and right cosets of H containing a. Exhibit all left and right cosets of the subgroup $4 \mathbb{Z}$ of $2 \mathbb{Z}$.
21. Prove that a group homomorphism $\phi: G \rightarrow G^{\prime}$ is a one-one map if and only if $\operatorname{Ker}(\phi)=\{e\}$.
22. Define Ring. Give an example.
23. Find all solutions of the equation $x^{3}-2 x^{2}-3 x=0$ in \mathbb{Z}_{12}.
24. Define characteristic of a ring. Find the characteristic of the ring $\mathbb{Z}_{3} \times 3 \mathbb{Z}$ and $\mathbb{Z}_{3} \times \mathbb{Z}_{4}$.
25. Show that the intersection of two normal subgroups of a group is a normal subgroup.
26. If \mathbb{R} is a ring such that $a^{2}=a \in \mathbb{R}$. Prove that \mathbb{R} is a commutative ring,

Section C

Answer any six out of nine questions.

Each question carries 7 marks.
27. Let G be a set consisting of ordered pairs (a, b) such that a, b are real and $a \neq 0$. A binary operation * is defined on G by $(a, b)^{*}(c, d)=(a c, b c+d)$. Prove that G is a group under *. Is G abelian ? Justify.
28. Show that a nonempty subset H of a group G is a subgroup of G if and only if $a b^{-1} \in \mathrm{H}, \forall a, b \in \mathrm{H}$.
29. Let G and G^{\prime} be groups and let $\phi: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be a one-one function such that $\phi(x y)=\phi(x) \phi(y)$ for all $x, y \in \mathrm{G}$. Prove that $\phi[\mathrm{G}]$ is a subgroup of G^{\prime} and ϕ is an isomorphism of G with $\phi[\mathrm{G}]$.
30. Define abelian group. Prove that a group G is abelian if every element except the identity e is of order 2.
31. Show that the set of all permutations on three symbols forms a finite non-abelian group S_{3} of order 6 with respect to permutation multiplication.
32. Let $\phi: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be a group homomorphism and let $\mathrm{H}=\operatorname{Ker}(\phi)$. For $a \in \mathrm{G}$, prove that the $\operatorname{set}\{x \in \mathrm{G} / \phi(x)=\phi(a)\}$ is the left $\operatorname{coset} \alpha \mathrm{H}$ of H .
33. Show that $a^{2}-b^{2}=(a+b)(a-b)$ for all a, b in a ring \mathbb{R} if and only if \mathbb{R} is commutative.
34. Show that the characteristics of an integral domain D must be either 0 or a prime p.
35. Describe the field of quotients of an integral domain.

$$
(6 \times 7=42 \text { marks })
$$

Section D

Answer any two out of three questions.
Each question carries 13 marks.
36. (a) Let H be a subgroup of a group G . For $a, b \in \mathrm{G}$, let $a \sim b$ if and oniy if $a b^{-1} \in \mathrm{H}$. Show that ~ is an equivalence relation on G.
(6 marks)
(b) Prove that a subgroup H of a group G is normal in G if and only if each left coset of H in G is a right coset of H in G .
37. (a) Prove that no permutation in S_{n} can be expressed both as a product of an even number of transpositions and as a product of an odd number of transpositions.
(b) Prove that a subgroup of a cycle group is cyclic.
38. (a) Show that the order of an element of a finite group divides the order of the group.
(b) Prove that every finite integral domain is a field.

