\qquad
\qquad

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2017

 (CUCBCSS-UG)Mathematics
MAT 5B 07-BASIC MATHEMATICAL ANALYSIS
Time : Three Hours

Maximum : 120 Marks

Section A

Answer all the twelve questions.
Each question carries 1 mark.

1. Define a denumerable set.
2. State trichotomy law of real numbers?
3. State triangle inequality for real numbers.
4. Find all x satisfying $|x-3|=|x-5|$.
5. State the Archimedian property of the set of natural numbers.
6. Write the condition for a nested sequence of real numbers to have a unique common point.
7. State the ration test for the convergence of a real sequence.
8. Explicitly state monotone subsequence theorem.
9. Write the statement of Bolzano-Weierstrass theorem for a sequence.
10. Define Cauchy sequence.
11. Find $\operatorname{Arg}(z)$ if $z=\frac{i}{-2-2 i}$.
12. Express $(\sqrt{3}-i)^{7}$ in the exponential form.

Section B

Answer any ten out of fourteen questions.
 Each question carries 4 marks.

13. Prove that the collection of all finite subsets of \mathbb{N} is countable.
14. If $x>1$, prove that $(1+x)^{n} \geq 1+n x$ for all $n \in \mathbb{N}$.
15. If $a \geq 0$ and $b \geq 0$, prove that $a<b$ if and only if $\sqrt{a}<\sqrt{b}$.
16. Sate and prove density theorem.
17. If $y>0$ prove that there is an n_{y} in \mathbb{N} such that $n_{y}-1 \leq y<n_{y}$.
18. Define the supremum and the infimum of a set S . Find them for the set $\mathrm{S}=\left\{1-\frac{(-1)^{n}}{n}, n \in \mathbb{N}\right\}$.
19. Prove that there is no rational number whose square is two.
20. Prove that there is at most one limit for the sequence of real numbers.
21. For $0<b<1$ show that $\lim b^{n}=0$.
22. Prove that every Cauchy sequence of real numbers is bounded.
23. Discuss the convergence of the sequence $x_{n}=\left(1+\frac{1}{n}\right)^{n}, n$ in \mathbb{N}.
24. Prove the triangle inequality for the complex numbers algebraically.
25. Find all values of $(-8 i)^{\frac{1}{3}}$.
26. Find the rectangular form of $(\sqrt{3}-i)^{6}$ and the principal value of the amplitude.

$$
(10 \times 4=40 \text { marks })
$$

Section C

Answer any six out of nine questions.
Each question carries 7 marks.
27. Show that the set of real numbers is uncountable.
28. Prove that there is no rational number x whose square is 3 .
29. Sate and prove Cantor's theorem.
30. State and prove the characterization theorem for intervals.
31. Define contractive sequence and show that every contractive sequence is a Cauchy sequence.
32. Establish that every monotone sequence is convergent if and only if it is bounded.
33. Discuss the convergence of the following $\left(x_{n}\right)$ where :
(i) $x_{n}=\left(1+\frac{1}{n^{2}}\right)^{2 n^{2}}$, (ii) $x_{n}=\frac{\sin n}{n}$.
34. Show that a real sequence is convergent if and only if it is Cauchy.
35. Find the square roots of $-\sqrt{3 i}+1$ and express them in rectangular form.

$$
(6 \times 7=42 \text { marks })
$$

Section D

Answer any two out of three questions.
Each question carries 13 marks.
36. (a) Show the existence of a positive real number in detail whose square is 2 .
(b) Show that between any two real numbers there is an irrational number.
37. (a) Prove that every bounded sequence of real numbers has a converging subsequence.
(b) Show that a monotone sequence of real numbers is properly divergence if and only if it is unbounded.
38. (a) If $\lim \left(x_{n}\right)=x$ and $\lim \left(y_{n}\right)=n$ be sequences of non-zero reals that converge to x and $y \neq 0$ respectively. Prove that $\lim \left(\frac{x_{n}}{y_{n}}\right)=\frac{x}{y}$.
(b) Discuss the convergence of (i) $x_{n}=\frac{(-1)^{n} n}{n^{2}+1}$ and (ii) $y_{n}=\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ where $0<a<b$.

$$
(2 \times 13=26 \text { marks })
$$

