(Pages: 2)

Name.....

Reg. No.....

SIXTH SEMESTER B.Sc. DEGREE (SUPPLEMENTARY/IMPROVEMENT) EXAMINATION, MARCH 2017

(UG-CCSS)

Mathematics

MM 6B 10—COMPLEX ANALYSIS

Time : Three Hours

Maximum: 30 Weightage

Section A

Answer all questions. Each question carries ¼ weightage.

- 1. The real part of an analytic function is harmonic. Say True or False.
- 2. What is the value $\lim_{z\to\infty} \frac{2z^3-1}{z^2+1}$?
- 3. What is the imaginary part of z^3 ?
- 4. $e^{2+3\pi i}$ is _____

(a) e^2 ; (b) e; (c) 1; (d) $-e^2$.

- 5. Express the $\sin hx$ in terms of exponential function.
- 6. Give an example of a complex function which is entire and bounded.
- 7. What is the parametric form of the circle |z| = 4?
- 8. Find pole of the function $f(z) = \frac{z-1}{z^2-1}$.
- 9. Determine the singular points of $\frac{z+1}{z^2-2x}$.
- 10. Write the formula for residue of f(z) at a pole z = a of order m.
- 11. For an analytic function f(z) if $v_x = -2y$ and $v_y = 2x$ then find $f^1(z)$.
- 12. Find the value of $\oint_{|z|=1} \frac{dz}{z+2}$.

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Section B

Answer all nine questions. Each question carries 1 weightage.

- 13. Show that the function $f(z) = e^z$ is differentiable everywhere.
- 14. Show that $u = e^x \cos y$ is harmonic.

Turn over

- 15. Prove that an analytic function whose imaginary part is constant is itself a constant.
- 16. Test whether $f(z) = \frac{1}{z}$ is analytic or not.
- 17. Show that $\cosh(z + \pi i) = \cosh z$.
- 18. State Taylor's theorem.
- 19. Evaluate $\int_{C} \frac{\sin z}{z \pi/2} dz$ where C is the unit circle.
- 20. Find the residue of $f(z) = \frac{1}{2z+3}$ at $z = -\frac{3}{2}$.
- 21. Find the singularities of the function $ze^{1/z}$.

 $(9 \times 1 = 9 \text{ weightage})$

Section C

Answer any **five** questions. Each question carries 2 weightage.

- 22. Show that $u(x, y) = 2x x^3 + 3xy^2$ is a harmonic function and find a harmonic conjugate v(x, y) of u.
- 23. Prove that the families of level curves $u(x, y) = c_1$ and $v(x, y) = c_2$ are orthogonal for an analytic function f(z) = u(x, y) + iv(x, y).
- 24. Prove that $f(z) = z \operatorname{Im} z$ is differentiable only z = 0 and find $f^{1}(0)$.
- 25. Using Cauchy's residue theorem evaluate $\int \frac{e^{2z}}{(z+1)^3} dz$ around the circle $|z| = \frac{3}{2}$.
- 26. Find all roots of the equation $\sin hz = i$.
- 27. Expand sinz into a Taylor's series about the pont $z = \frac{\pi}{4}$ and determine the region of convergence.
- 28. Evaluate $\int_C \frac{3z-4}{z(z-1)} dz$ where C is the circle |z| = 2 using Cauchy's integral formula.

 $(5 \times 2 = 10 \text{ weightage})$

Section D

Answer any **two** questions. Each question carries 4 weightage.

- 29. Expand $f(z) = \frac{z}{(z-1)(2-z)}$ in a Laurent's series value for (i) |z| < 1; (ii) 0 < |z-2| < 1; (iii) |z-1| > 1.
- 30. Using contour integration find the value of $\int_0^{2\pi} \frac{d\theta}{2+\cos\theta}$
- 31. Evaluate using (i) Cauchy's integral formula ; (ii) residue theorem $\int_C \frac{z+1}{z^2+2z+4}$ where C is the circle |z+1+i| = 2.

 $(2 \times 4 = 8 \text{ weightage})$