D 40046

(Pages:4)

Name		
1 amon	 	 •

Reg. No.....

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH/APRIL 2018

(CUCBCSS-UG)

Mathematics

MAT 6B 13 (E02)—LINEAR PROGRAMMING

Time : Three Hours

Maximum: 80 Marks

Part A (Objective Type)

Answer all the twelve questions. Each question carries 1 mark.

- 1. Define extreme point of a convex set.
- 2. A hyperplane is given by the equation $3x_1 + 2x_2 + 4x_3 + 7x_4 = 8$. Find in which half space does the point (-6, 1, 7, 2) lie.
- 3. What do you mean by a degenerate basic solution?
- 4. Define slack and surplus variable.
- 5. Reduce the following LPP to its standard form : Maximize $z = x_1 + 2x_2$ subject to the constraints,

 $\begin{array}{ll} 2x_1 - 3x_2 \leq & 3 \\ 4x_1 + & x_2 \leq -4 \\ & x_1, x_2 \geq & 0. \end{array}$

- 6. When does the simplex method indicate that the LPP has unbounded solution ?
- 7. Write the dual of the following LPP Min $4x_1 + 6x_2 + 18x_3$ subject to the constraints,

$$\begin{split} & x_1 + 3x_3 \geq 3 \\ & x_2 + 2x_3 \geq 5 \\ & x_1, x_2, x_3 \geq 0. \end{split}$$

- 8. When does the transportation problem is said to be unbalanced.
- 9. What is transportation problem?

Turn over

- 11. State the necessary condition for the existence of feasible solution to transportation problem.
- 12. What do you mean by an unbalanced assignment problem ?

 $(12 \times 1 = 12 \text{ marks})$

Part B (Short Answer Type)

Answer any **nine** questions. Each question carries 2 marks.

- 13. Formulate the following problem as a LPP : A firm manufactures two type of products A and B and sells them at a profit of Rs. 2 on type A and Rs .3 on type B. Each product is processed on two machines M_1 and M_2 . Type A requires 1 minute of processing time on M_1 and 2 minutes on M_2 ; Type B requires 1 minute on M_1 and 1 minute on M_2 . The machine M_1 is available for not more than 6 hours 40 minutes, while machine M_2 is available for 10 hours during any working day.
- 14. Prove that a hyperplane in \mathbb{R}^n is a convex set.
- 15. Solve graphically, Maximize $z = 2x_1 + 3x_2$ subject to the constraints
 - $\begin{aligned} x_1 + x_2 &\leq 1; \\ 3x_1 + x_2 &\leq 4; \\ x_1, x_2 &\geq 0. \end{aligned}$
- 16. Write the characteristics of standard form of LPP.
- 17. Find all basic solutions of the system,

 $\begin{array}{ll} x_1 + 2x_2 + & x_3 = 4 \\ 2x_1 + & x_2 + 5x_3 = 5. \end{array}$

- 18. Prove that the intersection of 2 convex sets is also a convex set.
- 19. Show that the dual of the dual of a given primal is the primal itself.
- 20. Write all the steps for North-West corner rule.
- 21. How to solve the degeneracy in transportation problem.
- 22. Give an algorithm to solve assignment problem.
- 23. Write the steps for solving assignment problem by Hungarian method.
- 24. Write the main differences between assignment problem and transportation problem.

 $(9 \times 2 = 18 \text{ marks})$

Part C (Short Essays)

Answer any **six** questions. Each question carries 5 marks.

25. Use graphical method to solve Maximize $z = 5x_1 + 7x_2$ subject to the constraints

 $\begin{array}{rl} x_1 + & x_2 \leq 4 \\ & 3x_1 + 8x_2 \leq 24 \\ 10x_1 + 7x_2 \leq 35 \\ & x_1, x_2 \geq 0. \end{array}$

- 26. Explain Charne's Big-M method.
- 27. Show that the set of all convex combinations of a finite number of vectors x_1, x_2, \dots, x_k in \mathbb{R}^n is a convex set.
- 28. Using Simplex method to solve the LPP : Maximize $2x_1 + 4x_2$ subject to the constraints

 $\begin{array}{l} 2x_1 + 3x_2 \leq 48 \\ x_1 + 3x_2 \leq 42 \\ x_1 + x_2 \leq 21 \\ x_1, x_2 \geq 0. \end{array}$

- 29. Let $x_1 = 2$, $x_2 = 4$, $x_3 = 1$ be a feasible solution to the system of equations $2x_1 x_2 + 2x_3 = 2$, $x_1 + 4x_2 = 18$, reduce the feasible solution to a basic feasible solution.
- 30. Show that $S = (x_1, x_2, x_3): 2x_1 x_2 + x_3 \le 4$ in \mathbb{R}^3 is a convex set.

31. Prove that there always exist an optimal solution to a balanced transportation problem.

32. Solve :

	\mathbf{D}_1	D_2	D_3	D ₄	supply
01	21	16	25	13	11
O_2	17	18	14	23	13
0 ₃	32	27	18	41	19
Demand	6	10	12	15	43

33. Prove that there always exist an optimal solution to a balanced transportation problem.

 $(6 \times 5 = 30 \text{ marks})$

Turn over

Part D

Answer any **two** questions. Each question carries 10 marks.

34. Use Simplex method to solve the LPP : Maximize $z = 2x_1 + x_2$ subject to the constraints

 $\begin{array}{rrrr} 4x_1 + 3x_2 \leq 12 \\ 4x_1 + x_2 \leq & 8 \\ 4x_1 - x_2 \leq & 8 \\ x_1, x_2 \geq & 0. \end{array}$

- 35. Let $A \subseteq \mathbb{R}^n$ be any set. Show that the convex hull of A, is the set of all finite convex combination of vectors in A.
- 36. Solve the transportation problem

	D ₁	D_2	\mathbf{D}_3	D ₄	Availability
01	1	2	1	4	30
O ₂	4	2	5	9	50
O ₃	20	40	30	10	20
Demand	20	40	30	10	100

 $(2 \times 10 = 20 \text{ marks})$