C 21071

(Pages : 3)

- tulliconnection and a second s				

Namo

Reg. No.....

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2017

(CUCBCSS-UG)

Mathematics

MAT 6B 10-COMPLEX ANALYSIS

Time : Three Hours

Maximum: 120 Marks

Section A

Answer all the **twelve** questions. Each question carries 1 mark.

1. Define the limit of a complex valued function.

2. Write Cauchy's integral formula with full assumptions involved.

3. Verify whether $f(z) = 2i\overline{z}$ is analytic or not at z = 0?

4. Find the simple poles, if any for the function $f(z) = \frac{(z-1)^2}{z^3(z^2+2)}$.

5. Is $u(x, y) = x^2 + y^2 + xy$ a harmonic function? Justify your claim.

6. Define residue of a complex valued function.

7. Fill in the blanks : The real part of sinh (2z) is ———

8. Fill in the blanks : The locus of the points z satisfying $|z + 2i|^2 = 2|i + 1|$ is a/an —

9. Solve for $z : 5iz = 2\overline{z}$.

10. If R is the radius of convergence of $\sum a_n z^n$, find the radius of convergence of $\sum a_n z^{2n}$.

11. What do you mean by a simply connected domain?

12. Find the value of $i^i + \log(i)$.

 $(12 \times 1 = 12 \text{ marks})$

Section B

Answer any ten out of fourteen questions. Each question carries 4 marks.

13. Which one is bigger : $|z_1| - |z_2||$ or $|z_1 - z_2|$. Prove your claim.

14. Verify Cauchy-Riemann equations for the function $f(z) = z^3$.

Turn over

- 15. Show that $\tan^{-1}(z) = \frac{i}{2}\log\frac{i+z}{i-z}$.
- 16. Show that the poles of an analytic function are isolated.
- 17. Evaluate the line integral of $f(z) = z^2$ over the line joining 2i to i 1.
- 18. Find the radius of convergence of the power series :

$$\sum_{n=0}^{\infty} \frac{n! z^n}{n^n}.$$

- 19. Verify Cauchy-Groursat theorem for $f(z) = z^5$ when the contour of integration is the circle with centre at origin and radius 3 units.
- 20. Locate the poles and zeros, if any, of $f(z) = \sin(1/z)$ in the complex plane.
- 21. Find all the solutions of $e^z = 2$.
- 22. Find the residue of $f(z) = \sin (z)/z^2$ at z = 0 and evaluate the integral of f(z) around the circle containing zero inside it.
- 23. Using the definition of continuity show that $\sin z$ is continuous through out the plane.
- 24. Find the Taylor series expansion of $f(z) = e^z$ around $z = i\pi/2$.
- 25. Find the real and imaginary parts of the function $f(z) = \sin(z)$.
- 26. Determine all the poles of the $f(z) = \sec^2 z$ lying in the disc $|z \pi/2| \le 3$.

 $(10 \times 4 = 40 \text{ marks})$

Section C

Answer any **six** out of nine questions. Each question carries 7 marks.

27. Evaluate $\oint_C \frac{1}{(z-a)(z-b)}$ discussing the cases of containment of the points $a \neq 0$ and $b \neq 0$ inside

and outside the simple closed curve C.

- 28. Determine the nature of the singularities of the function $f(z) = \cos(1/z)$. Does this function have zeros? Find them if any.
- 29. Find the Laurentz series expansion of $f(z) = \frac{z}{(2z-3)^2(z-2)}$ discussing the various regions of validity for the expansion.
- 30. Prove the converse of Cauchy-Goursat's integral theorem by fully stating the assumptions involved.

- 31. Find the analytic function f(z) for which $u(x, y) = \text{Re}(f(z)) = e^x (x \cos y y \sin x)$. You should express f(z) finally only in terms of z.
- 32. Show that the function $f(z) = \sqrt{xy}$ is not analytic at the origin, even though Cauchy-Riemann equations are satisfied at that point.
- 33. Prove the formulas for conversion Cauchy-Riemann equation into the corresponding polar form in detail.
- 34. Show that the derived series has the same radius of convergence as the original series.
- 35. Determine the locus of points of z in the complex plane satisfying the equation |z-2| |z-1| = 2.

 $(6 \times 7 = 42 \text{ marks})$

Section D

Answer any **two** out of three questions. Each question carries 13 marks.

- 36. (a) State and prove Liouvillies theorem.
 - (b) Prove or disprove : $|\cos(z)| \le 1$ for all complex numbers z. Justify your claim.
- 37. (a) State and prove fundamental theorem of Algebra.
 - (b) Find the residues of $f(z) = \frac{z^2}{(z-1)^2(z-2)}$ at its poles.
- 38. (a) Evaluate using the method of residues : $\int_0^{2\pi} \frac{1}{3 + 2\cos\theta} \, d\theta.$

(b) Evaluate
$$\int_0^\infty \frac{x^2}{x^4 + a^4} dx, a > 0.$$

 $(2 \times 13 = 26 \text{ marks})$