About a Conjecture on the Centers of Chordal Graphs

K.S. Parvathy, A. Remadevi, and A. Vijayakumar
Department of Mathematics and Statistics, Cochin University of Science and Technology, Cochin 682 022, India

Abstract. In this paper, a conjecture of G.J. Chang, that $d(C(G)) \leq 2$ for any connected chordal graph G with $d(G)=2 r(G)-2$, is disproved.

1. Introduction

Let $G=(V, E)$ be a connected graph. The distance $d(x, y)$ from a vertex x to a vertex y is the minimum number of edges in a path from x to y. The eccentricity $e(x)$ of x in V is the maximum of $d(x, z), z$ in V, radius $r(G)$ is the minimum of $e(z), z$ in V, and diameter $d(G)$ is the maximum of $e(z), z$ in V.

The center of a graph G is defined to be $C(G)=\{x \in V \mid e(x)=r(G)\}$. Because of numerous applications of this concept, the structure of the center for various classes of graphs are well studied. Apart from the theorem of Jordan, that the center of a tree is either K_{1} or K_{2}, centers of maximal outer planar graphs, 2-trees, unicyclic graphs, and median graphs are discussed in [5-7], and [3], respectively.

2. Centers of Chordal Graphs

A graph G is chordal (triangulated, rigid circuit) if it contains no cycle of length greater than three as an induced graph. Though, the center of a connected graph need not be so, it is known [2] that the center of a connected chordal graph is always connected and for such graphs $d(C(G))<3$, see [4]. Consequently, the results in [1], that $d(C(G)) \leq 3$ for any connected chordal graph G with $d(G)=2 r(G)-1$ and $d(C(G)) \leq 5$ for such graphs with $d(G)=2 r(G)-2$, are less significant.

Since $2 r(G)-2 \leq d(G)$ for any connected chordal graph, it follows that for a self-centered chordal graph $G, r(G) \leq 2$. In [4], a characterization of self-centered chordal graphs is given. These results have led to the following counter example for a conjecture in [1].

3. Counter Example

Conjecture [1]. $d(C(G)) \leq 2$ for any connected chordal graph with $d(G)=$ $2 r(G)-2$.

Fig. 1.
That, the conjecture is not true, can be seen from the following example.
G has $(r, d)=(3,4)$ and $d(C(G))=3$. A class of such graphs can be constructed from G by the following procedure. Replace each b_{t} by a complete graph $K_{m_{t}}=$ $\left\langle b_{i}^{2}, b_{i}^{2}, \ldots, b_{l}^{n_{i}}\right\rangle, b /$ is adjacent to b_{j}^{k} if b_{l} is adjacent to b_{j} also a_{l} or c_{k} is adjacent to b_{f} if they are adjacent to b_{l} in G.

Acknowledgemeat. The authors are grateful to the referee for some suggestions during the revision of the paper. The first author thanks the C.S.I.R. for awarding a research fellowship.

References

1. Chang, GJ.: Centers of chordal graphs. Graphs and Combinatorics 7, 305-313 (1991)
2. Laskar, R. and Shier, D: On powers and centers of chordal graphs, Disc. Appld. Math. 6, 139-147 (1983)
3. Nieminen, J:Distance center and centroid of a median graph. J. Franklin Inst. 323, 89-94 (1987)
4. Prabir Das and Rao, S.B.: Center graphs of chordal graphs. Proc. of the Seminar on Combin and Applns, ISI, 81-94 (1982)
5. Proskurowski, A.: Centers of 2-trees. Annals of Disc. Math. 9, 1-5 (1980)
6. Proskurowski, A.: Centers of maximal outer planar graphs. J. Graph. Theory 4 (2), 75-79 (1980)
7. Truszcynski, M.: Centers and centroids of unicyclic graphs. Math. Slovaca, 35, 223-228 (1985)
