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About a Conjecture on the Centers of Chordal Graphs
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Ahstract In this paper, a conjecture of GJ. Chang, that d(C(Cn £ 2 for anv conneaed
diordal graph G with d(<^ *= 2r(G) — 2, is disproved.

L Introdiiction

Let G ss (1^£) be a connected graph. The distance dix^y) from a vertex x to a vertex
j is the minimum number of edges in a path from x to y. The eccentricity e(x) of x
in Kis the maximum of d(x, zX 2 in H radius riC) is the minitnnm of e(zX z in K, and
diameter d{G) is the mflriimifn of e(z), z in K

The center of a graph G is defined to be C(G) = {x e K|c(x) = r(Q}, Because of
nmnerous apffiications of this concept, the structure of the center for various
of grapte arc well studied. Apart from the theorem of Jordan, that the center of a
tree is either X| or centers of maximal outer planar graphs, 2-trees, unic^dic
graphs, and median graphs are discussed in £5-7], and £3], respectively.

2. Caters of CboidaJ Graphs

A graph G is chordal {triangulated^ rigid circuit) if it contains no cycle of length
greater than three as an induced graph. Though, the center of a connected graph
need not be so, it is known £2] that the center of a connected chordal graph is always
connected and for such graphs d{C{G)) < 3, see £4]. Consequently, the results in
£1], that d(C{G)) 3 for any connected chordal graph G with d{G) = 2riG) — 1 and
d{Ci^) ̂  5 for such graphs with d{G) = 2r(G) - 2, are less si^iificant

Since 2r{G) — 2 ̂ d{G) for any connected chorda] graph, it follows that for a
self-centered chordal graph C, r{G) ̂  Z In £4], a characterization of sdf-centered
diordal graphs is given. These results have led to the following counter example for
a conjecture in £1].

5. Counter Example

Conjecture £!]. diC(G))^2 for any connected chordal graph with diG) =
2r(G) — 2.
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That, the conjecture is not true, can be seen from the following example.
O has (r,d) = (3,4) and d(C(G)) = 3. A class of such graphs can be constructed

from G by the foUowinig procedure. Replace each bt by a complete graph «
b{ is adjacent to b} if h,is adjacent to bjalso a^ or is adjacent to

b{ if they are adjacent to bi in G.
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