## [GTN XXXIV:4] (k,2)-CONVEX GRAPHS: MINIMAL PATH CONVEXITY

Karakattu S. Parvathy and Ambat Vijayakumar<br>Department of Mathematics<br>Cochin University of Science and Technology<br>Cochin - 682022<br>Kerala, INDIA


#### Abstract

A necessary and sufficient condition for the existence of a 2-connected ( $\mathbf{k}, \mathbf{2}$ )-convex graph is obtained.


## 1. Introduction

In this paper we consider only finite, undirected graphs. We follow the notation and terminology of Buck] and Harary [1]. Convexity can be defined for the vertex set of a graph $G=(V, E)$ in several ways. Pro inently, $\mathbf{A} \subseteq \mathbf{V}$ is convex if for all $\mathbf{x}, \mathbf{y}$ in $\mathbf{A},\{\mathbf{z}: \mathbf{z}$ is in some $\boldsymbol{x y}$ geodesic $\subseteq A$; and it is minimal path cc $v e x\left(\mathbf{m}\right.$-convex) if $\{\mathbf{z}: \mathbf{z}$ is in some chordless $x v$ path $\} \subseteq \mathbf{A}$ where a chordless $x y$ path is a path $P: x=x_{1}$,
$x_{n}=y$ such that no nonconsecutive vertices in $P$ are adjacent in $G$. Since any shortest path is chordless is obvious that an $\mathbf{m}$-convex subset of V is convex. An example of a convex set that is not $m$-convex is sho in Figure 1. Several aspects of these types of convexities have been studied by Mulder [2], Farber [3], Dud [4], and Bandelt [5]. An excellent survey has been made by Van de Vel [6].


Figure 1: $\{x, y, z\}$ is convex but not $m$-convex


Figure 2

In a graph $G$, the empty set, singletons, sets inducing complete subgraphs, and $V(G)$ are trivially convex. an attempt to classify graphs according to the number of nontrivial convex sets, Hebbare [7] called a gr: $(k, \omega)$-convex if it has exactly $k$ nontrivial convex sets and its clique number, the order of the largest cliq is $\mathbf{w}$. If $k=1$, the graph is said to be uniconvex [8]. (0,2)-convex graphs are called convex simple, if $\mathbf{c}_{1}$ vexity is considered, or m-convex simple, if m-convexity is considered. Although every convex simple gra is $\mathbf{m}$-convex simple, the converse is not true (see Figure 2). Moreover, $\mathbf{C}$, for $n>4$ and $Q_{n}$ for $n>2$ are convex simple but are not convex simple.
It is known [9] that, for any given $k$ a ( $k, 2$ )-convex graph can he constructed for convexity. Here, we consi only m-convexity and make some observations.

## 2. Main Results

In a connected graph $G, S \subseteq V$ is called a separator if $G \backslash S$ is disconnected. Further, it is a clique separa if $(S)$ is a clique.

Theorem 2.1 [10]: A graph $G$ is m-convex simple if and only if it has neither a nontrivial clique nor a clique separator.

Definition 2.1: A convex set in which no proper subset with cardinality at least three is convex, is called a minimal nontrivial convex set.

Theorem 2.2: Let $k$ be a positive integer. The following are equivalent:

1) There exists a 2 -connected ( $\mathbf{k}, 2$ )-convex graph.
2) There is a block graph $H$ such that $k=I H_{\downarrow} \mid, H=\{C \mathbf{C} V(H): C$ is convex, $C \neq 0$, VI Proof:
3) 2): Let $G$ be a 2-connected ( $k, 2$ )-convex graph, and let $\mathbf{C}_{1}, \mathbf{C}_{2}, \ldots, C_{n}$ be the minimal convex su V. Let $C_{i} \cap C \quad S_{i}$ Clearly, $\left|S_{i j}\right| \mathbf{5} \mathbf{2}$ for $i j$ and since $S_{i j}$ is convex $\left\langle S_{i j}\right\rangle$ is a clique provide nonempty.
Claim 1: $S_{u}$ is a clique separator if and only if $1 ; 1=2$.
Let $S_{t j}=\{\mathbf{x}, \mathbf{y}\}$. Since $S$ : is convex, $\mathbf{x}$ is adjacent toy.
To prove that $S_{u}$ is a separator for $G$, suppose otherwise. Then each vertex of $C_{i} S_{i j}$ is connected to in $C_{j} S_{i j}$ by some path in $G \backslash S_{i j}$. Let $c_{t} \mathrm{E} C_{t} c_{j} \mathrm{E} C_{j}$, and let $c_{o} u_{p} u_{2}, \ldots, u_{l}, c_{j}$ be a chordless $c_{i}$ in $G \backslash S_{;}$Assume without loss of generality that $u_{k} \notin C_{i}$ for $k=1,2, \ldots, 1$. Since $G$ is triangle free, adjacent to at least one vertex, say $x$ of $S_{i} p$ Note that $c_{j}$ and $x$ are connected by some path. Thus, th chordless $c_{l} x$ path that contains vertices not in $C_{i}$. This contradicts the fact that $C_{l}$ is convex. Hence 4 disconnected. The converse is obvious because $G$ is $\mathbf{2}$-connected.
Now form the graph $H$ with $\left.V(H)=I C_{1}, C_{2}, \ldots, C_{n}\right\}$ and $C_{l}$ adjacent to $C_{j}$ if $C_{\boldsymbol{t}} \cap C_{j}$ is a clique se Claim 2: $H$ is a block graph.
If not, there will be a block $B$ in $H$ and $C_{i}, C_{\boldsymbol{J}} \mathbf{E} B$ such that $C_{\boldsymbol{i}}$ is not adjacent to $C_{\boldsymbol{j}}$ in $H$. Assume with of generality that $d\left(C_{i}, \quad=2\right.$ and let $i=\mathrm{I}, \mathbf{j}=3$. Let $\mathbf{C}_{1}, \mathbf{C}_{2}, \mathbf{C}_{3}$ be a path and since $B$ is a bloc will be another chordless path $\mathrm{C}_{3}, \mathrm{C}_{4}, \ldots, C_{1}, C_{1}$ connecting $\mathbf{C} 3$ and $\mathbf{C 1}$.
Let $C_{i} \cap C_{t+1}=S_{i}$ for $i=1,2, \quad t$, where + denotes addition modulo $t$. Now $S_{i} * S_{2}$, $\left.d\left(C_{l}, C\right)\right)=\mathbf{2}$. Since $G$ is triangle free, there exists $\mathbf{x} E S_{1}, y \in S_{2}$ such that $x y \notin E(G)$. Note that $\mathbf{x}$, Now, since $C_{i} \cap C_{i+1} \neq \varnothing$, each $C_{i}$ induces a 2-connected triangle-free subgraph, $x E \mathbf{C}_{1}$ and Thus, we obtain a chordless $x y$ path containing vertices not in $\mathbf{C 2}$, a contradiction.
Note that $\mathbf{C}_{1}, \mathrm{C}_{2}, \quad C_{n}$ have the following properties.
4) If $C_{t} \cap C_{j}$ is a clique separator, then $C_{t} \mathbf{u} C_{j}$ is convex.
5) If $C_{t} \cap C_{j}, C_{j} \cap C_{k}, C_{k} \cap C_{i}$ are clique separators, then $C_{i} \cap C_{j}=C_{j} \cap C_{k}=C_{k} \cap C_{i}$.
6) If $d\left(C_{t}\right)=a$ and if the neighbors of $C_{t}$ are pairwise nonadjacent, then $\left(\mathbf{C}_{1}\right)$ has at least a edges

Hence it follows that, the convex subsets of $G$ correspond to the connected subsets of $H$, which are $\mathbf{p}$ the convex subsets.
2) 1): Let $H$ be a block graph. We can construct a triangle-free graph $G^{\prime}$ so that the convex subse correspond to the connected subsets of $H$. This can be done by replacing each vertex $u$ of $H$ by a coI an m-convex simple graph $G$ of sufficiently large size in such a way that $\boldsymbol{G}_{\boldsymbol{u}_{\mathbf{i}}} \boldsymbol{n} \boldsymbol{G}$
only if $u_{i}, i=1,2, \ldots, \mathbf{r}$ are in the same block of $H$. Observe that $V\left(G_{u}\right), u \in V(H)$ are precisely 1 imal nontrivial convex subsets of $G^{\prime}$.

Corollary: A graph $G$ is $(\mathbf{k}, \mathbf{2})$-convex only if there exists an $\mathbf{n}$ such that
$(n--1)(n+\mathbf{2}) / \mathbf{2} \quad k 52 n-\mathbf{2}$.
Proof: Follows from the fact that $\left|H_{c}\right|$ is minimum when $H$ is a path and maximum if it is a complet
Consequently, there is no uniconvex graph.
Remark: The converse of the above corollary is not true; since, if $k=12$ or $\mathbf{1 3}$, there is no (k,2) graph.
K.S. Parvathy and A. Vijayakumar: (k,2)-Convex graphs: Minimal path convexity

## Acknowledgement

The first author thanks the CSIR, India for financial support.

## References

[1] F. Buckley and F. Harary; Distance in Graphs, Addison-Wesley (1990).
[2] H.M. Mulder; The interval function of a graph, Math. Centre Tracts, 132, Amsterdam (1980).
[3] M. Farber and R.E. Jamison; Convexity in graphs and hypergraphs, SIAM J. Alg. Disc. Methods, 7, 434-444।
[4] P. Duchet: Convex sets in graphs: H. Minimal path convexity, J. Comb. Theory; Series B, 44, 307-316 (1988
[5] H.J. Bandelt; Graphs with intrinsic S3 convexities, J. Graph Theory, 13,215-228 (1989).
[6] M. Van de Vel; Theory of Convex Structures, Elsevier, North-Holland (1993).
[7] S.P.R. Hebbare; Two decades survey of geodesic convexity in graphs, Proc. Symp. in Graph Theory and Cot orics, Cochin University, 119-153 (1991).
[8] S.P.R. Hebbare; Uniconvex graphs, Sankhya, Series A, 54,191-197 (1992).
[9] K.S. Parvathy and A. Vijayakumar; Distance convex simple graphs and interval monotonicity. Communis
[10] M. Changat; On monophonically convex simple graphs, Graph Theory Notes of New York, XXV:7, New York

- emy of Sciences, 41-44 (1993).

