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Abstract: In this paper we consider the geodesic iteration number and observe that . -.t.
^number, there are interval monotone graphs G and S c V(G) with |S| = 3 such that gin fS) is arb i^ i iteration
commutativity (JHC) property puts a bound on gin (S). We also prove that, if G is a geodetic JHC itranh th ̂
concepts play a significant role in convexity ofgraphs. * ^8raphthengm(G) = l. Jhese

I. INTRODUCTION

We consider only finite, simple, connected graphs G.
For the vertex set V(G) of G, several notions of path
convexities have been studied. The most widely discussed
are the geodesic convexity [19] and the minimal path
convexity [9]. Different aspects of these types of
convexities, such as evaluation of convex invariants [3,
II, 14], separation properties [2, 8], convex geometries
[10], interval monotonicity [15,16], convex si^le graphs
[1,6* 12 13, 17» 18] etc. have been well studied.

LetScV(G). Itforeveiyu,veS,Ij(u,v)={ze V(G):z
isonsonieu-vshortestpalh>eS,toSisgeodesicaIIyconvex
ord-convex. If is replaced by (u, v) = {z e V(G); z
is on some u-v minimal path), then S pad,convex
orm-convex. Thel.andl. are called the geodesic mtecval

||d minimal path interval, respective^. Smce, the convex
Tts are induced by suitable intervals, these graph convexity
spaces are interval convexity spaces and hence have

^ 2 f5 20] For convcnioncc, 1^ will be denoted

Mulder f 161 bos observed that the intervals need not
be c^vex aU" « «
geodesic intervals are convex. Q;
are examples of such graphs and K,j is not interval
monotone. TTie study of interval monotone graphs with
m-convexity has been recently 1"

Let 1? denote the convex subsets of VfG). Then (G,
disjoin hull commutative (IHC -f for any C e
tnd V e viU) Co(Ct-'(v})=^(Co((''*>> oeC),wheie
Vi 17 the convex hull of A. JHC property in graphs

n  property if for any a,b,c,u,v

'f V(G) such that u el (a, b). v € 1 (c, u), there is a w e
(b, c) such that V e J(a, w). It is known that the graphs
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associated with the five regular polyhedra have this
property.

{"•Wspaporwestudytheconceptofgeodesiciteration

An excellent survey of several aspects of convexity
spaces and convexity in graphs is in [20].

2. MAIN RESULTS

Definition 2.1I4J: Let G = (V. E) be a connected graph
and S e.V(G). Then, the closure of S, (S) = {x : x is on
some shortest path connecting vertices of S) Define S'
recursively as follows: S' = (S). S' = (S» i) for k > i The
geodesic iteration number gin (S) is the smallest number n
such that S" - S°". The geodesic iteration number gin (G)
is defined as max {gin (S): S £ V(G)). Replacing the
shortest path by the minimal path, we get the notion of
mm (S) and min (G).
Example: Let k be any positive integer and G be the graph
obtained by taking the sequential join of (k+1) copies of
Kj, then gin(G) = min (G) = k.

In fact, gin(G) measures how many steps one has to
perform to get G as the convex closure of a subset In
general not much can be said about the gin of a graph so
conditions on the convexity are required.

It is known that any graph with m-convexity has JHC
property. Also, G is interval monotone with m-convexitv
ifandonly ifmin(G)= 1 [15].

For graphs with geodesic convexity, it is necessary
that G IS interval monotone and JHC in order that gin (G)
- I. But, it is not sufficient. For. let G be Q, labelled as in
I'Ig.l.

Take S = {a^, b,, d,}. Then S' = V(G) - {c,} and
S^-V(G). Hence gin (G) 1.

It is observed that if G is interval monotone but not
JHC, there are graphs G and S c V(G) with |S| = 3 such



Fig.l

that gin (S) is arbitrarily large. But, JHC property plays a
.crucial role and we have,

Theorem 2.1: Let G be a JHC, interval monotone grajdi

and let S C V(G). Then gin (S) ̂  k, where k is such that

k-1 < log |?|_^ k.
log 2

Proof: Let S = {a, },

~  fn/al

^2 ~ Co({a ,aj).
Then Co(S) = Co(C, U C^)

= U {Co({c, ,Cj}): d, € C, Cj € }
= U {I(c,,Cj): c, e C, Cj e C,}

since G is JHC and interval monotone.

Hence Co(S) = U { I(c,,Cj) : c,, c^ € C, U Cj }

= (C,UC,)'.
Now let C„ = Co({a„a,, a })

C|j ~ (•b/4"]+1» »®fn/2"lJ)
^2J '®f3ii/4-l})
^22 ~ f 3n/4")+l» T

Then C, = Co(C„ VJ C,j) and
C 2 = Co(Cj, W Cjj).Then as above,

= (C„UC,,)' and

Hence Co(S) = ((C„ U C,,)' U (C„ U CJ')'
= (C„UC„UC„UCJ».

= {Co( {a,,a2, a j- }) U Co({a f n/2")))
y

= {Co({a,^ »ap„,j2^})UCo({ap„,32^„.
u. y
Proceeding like this,

Co(S)= {Co{a,,aj VJCo{ap„,jiu,^,, ,

C

Now when fn / 2 ''1 = 1

2^-' < n ̂  2" and Co(a,,aj a jk^) = Co (a,) = {a,}
Co(S) = ({a,} U{aj} Vj UfaJ)"

= ({a,. aJ)k = S^
Hence, gin (S) ̂  k, where 2"' ' < n < 2".

That is k-1 < log n ̂  k.where n = \S\.
log 2

The following discussion illustrates that the bound for'
gin (S) is sharp.

Let k be any integer and n = 2''. Let Q be the n-cube,
vertices labelled with (0,1) valued n-tuples.

Let 5. = (x,, xj where x, = 1 and x ̂ = 0 for j ̂  i
and 5„= (0,0, ,0).
Then, d (5. ,5^ = 2, for i ̂  0.
Lets ={6„6,, 5„}.
If 5 1- (x ,,Xj ,x^ where x, = x^  and

rn/2''-'l \J {a p^jk ,j jk.^ a^j} .

■•J ■' I' 2' »—n/ —j -jx^ = 0 for k ij, then 5, . is adjacent to 5, and 8j.
Hence,S'={5JUSUNj(8 j.
Now if 8 i ., 8 e Nj (8 J be such that iJ k» then

^ k./) ̂  4 and if A = {i, j, k, 0 and 8^ « (x,,. xj
where x .= x. = x = x = 1 and x =0 for m ^ A, then,

•  J E / m

Hence = {8 JU S VJ Nj (8 o) U N, (8 o) U N^ (6 o)
= {5JUSUNj(8JUN3(8JUNj2(8J

Similarly,S' = {8jUSUNj(8 JU UN ,(5 J,and
8"= {8JUSUNj(8 JU VJN ^(io) = V(QJ.
Hence gin (S) = k. '
Note : If n is such that 2^'^ < u < 2\ in the aboye
example,S''' = {5 Ju S UN, (8 J U (^o)
S' = {5 JU S U N, (8 J U....U N,« (8J U LJ N, (8 J.
Therefore ifn is such that 2'' ' <n^2^ gin(S)=gin({8,})=k.
Definition [20]. Let X be an interval convexity ̂ ace. An
interval I(a, b) of X is decomposable if for each x € I(a, b),
I(a.x)UI(x,b) = I(a,b).

We shall now describe the conditions for gin(G) to be 1.
It turns out that if an interval monotone, JHC graph has
the additional property that the geodesic intervals are
decoihpasable, then gin G =• 1- But, we first prove.
Theorem 2.2: A graph G is geodetic if and only if all its
intervals are decomposable.
Proof: Let G be a geodetic graph, a, b € V (G) and
X € I(a, b) = ab where ab is the unique shortest path
joining a and b. Then ab = ax U xb and hence
I(a,b) = I(a, X) u I(x, b).

Conversely, assume on the contrary that G is not a
geodetic. Let P, and P, be two distinct shortest path
joining a, b of V(G). Suppose x € P, and y € P, be
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•  . y . , J ■ , ■ ,

such that ax, ay G E(G). Observe then that, y $? I(a, x),

y g I(x, b) because ax G E(G) and d(x, b) = d(y, b).
Theorem 23: If G is a geodetic, JHC graph then gin (G) = 1.
Proof: Since G is geodetic, it is interval monotone. Also,
since G is JHC, the geodesic interval operator satisfies
the Peano properly py a theorem in [20]. We shall denote
by ab the shortest pathjoining a and b. To prove that gin (G) = 1,
it suffices to prove that gin (S) = 1 for any S C V(G) with |S| = 3.

So, let a, b, e G V(G>, u G ab, and v G cu^ It is
enough to prove that v is in one of the intervals I (a,b);
I (b,c) or I (a,c). Because G is geodetic I (a,b) = ab.

C

Fig.2

Assume without loss of genarality that d (c,v) =1. Let
d (a,c) = and d (b,c) = . Now, by the Peano property,
there are vertices v, G be, v^ G ac such that v G av, n bv^
Now, because d (a,c) = ̂̂, d (a,v) > -1.

If d(a,v)=^^-l thend(a,c) = d(a,v) + 1 = d(a,v)+d(a,c)
and hence V G ac.

So assume d (a,v) ̂  . If d (a,v) > then

d (a,v,) = d (a,v) + d (v.v,) > ̂, + d (v,v,). That is
p(a,v,) > d (a,c) + d (v,v,) Now d (a,v,) < d (a,c) + d (c,v,)
Therefore d (v,v,) < d (c,v,> and - d (c,v,) < - d (v,v,);
d (b,v,) < (,-d (v,v,) d (b,v,) + d (v,v,) < and so
d (b, v) ̂  ̂2 ■ ^ ^ 1 is not possible and hence
j  = £^-\ and in this case v G be.

Now assume that d (a,v) = r,.

Fig.3

In this case d (a,v,) = r, + d (v,v,). Now, if d (c,v,) > d
(v,v,), then d (b,v,) + d (v,v,) < - 1 and hence v, G be.

So let d (c,v,) < d (v,v,). But d (c,v,) < d (v,v,) is not
possible because av, is a shortest patlj containing v .
Therefore d (c,v,) = d (v,v,). But this is again a
contradiction because these give two distinct shortest
paths connecting a and Vj. Hence the proof.
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