C 33335

(Pages : 4)

Name.....

Reg. No.....

FIRST SEMESTER B.C.A. DEGREE EXAMINATION, NOVEMBER 2017

(CUCBCSS-UG)

Complementary Course

BCA 1C 01-MATHEMATICAL FOUNDATION OF COMPUTER APPLICATIONS

(2014-2016 Admissions)

Time : Three Hours

Maximum: 80 Marks

Part A (Objective Type)

Answer all ten questions.

- 1. What is the value of |A| if $A = \begin{bmatrix} -3 & 0 & 0 \\ 6 & 4 & 0 \\ -1 & 2 & 5 \end{bmatrix}$?
- 2. What is the value of α if $A = \begin{bmatrix} 3 & 0 \\ 0 & \alpha \end{bmatrix}$ is a matrix with characteristic values 3 and 5?
- 3. State whether the following statement is true or false;

" |x| is derivable at x = 0".

- 4. What is the derivative of $\sin(x^3)$?
- 5. What is the integral of $x + \frac{1}{x}$?
- 6. Evaluate $\int_{1}^{2} x^{2} dx$.
- 7. What is the order of the differential equation $\frac{dy}{dx} = x^2 1$?
- 8. Give an integrating factor for the equation y' + 2y = 4x.

Turn over

9. What are the roots of the auxiliary equation of $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 3y = 0$?

10. Write the particular integral of $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 10y = 6e^{4x}$.

 $(10 \times 1 = 10 \text{ marks})$

Part B (Short Answer Type)

Answer all five questions.

- 11. Find the value of λ such that the vectors \vec{a} and \vec{b} are perpendicular where $\vec{a} = 2\vec{i} + \lambda\vec{j} + \vec{k}$ and $\vec{b} = 4\vec{i} 2\vec{j} 2\vec{k}$.
- 12. If $f(x) = 3x^3 + 7x^5$ find f'(2).
- 13. Evaluate $\int_{0}^{2} (2x^{2} + 3x + 1) dx$.
- 14. Find the differential equation corresponding to the primitive $x^2 + y^2 + 2ax = 0$.
- 15. Solve $(D^2 + 1)y = 2\cos x$ where $D \equiv \frac{d}{dx}$.

 $(5 \times 2 = 10 \text{ marks})$

Part C (Short Essay Type)

Answer any five questions.

16. Find the eigen values of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix}$.

17. If
$$A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$$
 prove that $A^{-1} = A^{T}$.

18. Find from the first principle, the differential coefficient of $\sin 4x$.

19. State chain rule of differentiation of composite functions. Using chain rule find $\frac{dy}{dx}$ when $y = at^2$

and
$$t = \frac{x}{2a}$$
.

20. Evaluate $\int e^x \sin x \, dx$ using integration by parts.

- 21. Integrate $\frac{5}{(3x-1)(2x+1)}$ using the method of partial fractions.
- 22. Solve the equation $x\sqrt{1+y^2} dx + y\sqrt{1+x^2} dy = 0$.

23. Solve
$$\frac{d^2y}{dx^2} - y = 2 + 5x$$
.

 $(5 \times 4 = 20 \text{ marks})$

Part D (Essay Type)

Answer any five questions.

24. Test for consistency and if consistent solve the system of equations.

2x - y + 3z = 9x + y + z = 6x - y + z = 2.

25. (i) State the product rule of differentiation and using it find the differential coefficient of $x^3 \sin x$.

(ii) State the quotient rule of differentiation and using it differentiate $\frac{x^2-1}{x^2+1}$.

26. (i) If
$$\int_{a}^{b} x^{3} dx = 0$$
 and if $\int_{a}^{b} x^{2} dx = \frac{2}{3}$, find the values of a and b .

(ii) If $\int_{0}^{a} 3x^{2} dx = 8$, find the value of α .

Turn over

27. (i) Find the differential equation whose primitive is $y = Ae^{2x} + Be^{-2x}$.

(ii) Solve
$$\frac{dy}{dx} + \frac{2x}{1+x^2} y = \frac{1}{(1+x^2)^2}$$

28. Solve $(x^2 - y^2)\frac{dy}{dx} = 2xy$, given that y = 1 when x = 1.

29.
$$(D^2 - 2D + 2) y = e^x x^3$$
 where $D \equiv \frac{d}{dx}$.

- 30. Solve $(D^2 + 3D 10y) y = e^{2x}$ where $D \equiv \frac{d}{dx}$.
- 31. Form the partial differential equation by eliminating the arbitrary constants a, b and c from the

equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c} = 1.$

 $(5 \times 8 = 40 \text{ marks})$