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In this paper, a convexity for the edge set of a graph G =  (V, E) is defined. It is a matroid  of 

rank p —  1 where I V (G) I =  p and its arity  is not in general two. The classical convex invariants 

are also evaluated. 
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1. INTRODUCTION 

For the vertex set of a connected graph G =  (V, E) different types of convexities have been studied. 

All are path convexities and are induced by suitable interval operators, hence they are called interval 

convexity spaces. The arity  of such convexity spaces is two [7]. Most widely studied are geodesic 

convexity and induced path (minimal path) convexity. Van de vel  [7] has given a detailed account 

of combinatorial convexity theory in graphs and other discrete structures. Some other contributions 

on these lines are [1] to [6]. 

In this paper, we have two aims: 

1. To extend the convexity notions to the edge set of a graph. 

2. To study the properties of convexity spaces of arity  greater than 2. 

All basic graph theoretic and convex theoretic concepts are from [7]. 

In this paper we define cyclic convexity for the edge set of a graph. It is a matroid  of 

rank p —  1. Classical convex invariants-Helly  number, Radon number, Caratheodory  number and 

exchange number are also evaluated. 

mailto:wjay@cusat.ac.in
mailto:wjay@cusat.ac.in


2. CYCLIC CONVEXITY 

finition  1 —  [7] Let X be a non-empty set. A collection C of subsets of X is called a convexity 

X E C, is closed for intersections and for chained unions. The pair ( X, C) is called a convexity 

ice. 

Members of C are called convex sets. For any set S C X the convex hull of S is the smallest 

rivex  set containing S and is denoted by C o(S).  

Definition 2 —  [7] A convexity space X is of arity  <  n if its convexity is determined by 

?olytopes.  

That is, a subset C of X is convex if and only if Co(F)  C C for each subset F of X of 

•dinality  at most n. 

Let G be a graph with edge set E. Let C denote the collection of cycles and C,  denote the 

lection  of chordless  cycles of G and let E =IS  CE:CEC  and IC fl  SI >  ICI —  1 implies 

C SI and e  = CE:CE  C,  and IC n SI >  ICI —  1 implies C C SI. 

Lemma 1 —  E =  Ec.  

PROOF: It is obvious that e  C Ec.  Conversely, suppose that S E E,  and let C be the cycle of 

gth  k such that IC n SI  =  I CI, then it is clear that C C S. If IC fl  Si  =  ICI -  1, suppose that 

fl  S =  C —  {e} and C is not induced. Otherwise C E C,  and C C S is clear. Assume that 

all cycles C' with IC' I <  I CI  and with IC' fl  Si  >  ic'i  -  1, c S. Now, any chord e' of C 
;ether with some path of C —  {e} forms a cycle C' of length k' <  k with IC' fl  Si  > —  1, 
iich  implies that e' E S. Thus, all chords of C are in S. The edge e belongs to some chordless  

:le  C" induced by some of the vertices of C with I C11 1  <  ICI. Also IC" n  Si  >  iclli  -  1 =>  
'  c  s  =>  e E S =>  C C S =>  S E S. Hence, ec  C E. 

Definition 3 —  The collection E  forms a convexity on E and is called the cyclic convexity. 

Note: This convexity space is denoted by (G, e).  

In other words, S C E is convex if and only if for any cycle C in G, C C S whenever C—e  C S 
any e E C. For any So C E, Co(So)  =  {e' :  E So or C —  e' C So for some cycle C in G} .  
Examples —  

1. For a tree T every subset of E(T)  is trivially convex. 

2. In the graph G. 

Now, we shall consider a generalization of the notion of geodesic iteration number of an interval 

ivexity  space to a convexity space of arity  greater than two. 

Definition 4 —  Let X be a convexity space of arity  n, n >  2 and S C X. The closure of S, 

toted by (5)  is defined as (5)  =  U{Co(F)  :  F C X, IFI  <  n}.Sm  is recursively defined as, 

=  (5), Sm  =  (Sm-1).  The smallest positive integer m such that Sm+1  =  Sm  is called the 
.ation  number of S. The iteration number of X is defined to be the maximum iteration number of 

S C X. 
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FIG. 1. {el ,  e2, e31,  fe2,  e5, e8} are convex, but fe5 ,  e6 , e8} is not convex. 

Lemma 2 —The iteration number of (G, E) is 1. 

PROOF: Let S C E. It suffices to prove that 52  C 51 .  Let e E S2. Then, there is C E C,  such 

that C —  fel  c S1  =  (Si).  

Let e' E C —  {e}. Then E(C)  —  {e, e'} is convex. Hence e' Co(E(C)  —  {e, e'}). Now, 

e' E S1  implies that there exist a cycle C' E C,  such that C' —  {e'} C S. Then, C — {e'} UC'  —  {e'} 

is a cycle C" in C such that C" —  {e} C S, which implies that e E Sl .  Thus 51  =  S2  and so the 

iteration number is 1. 

Theorem 1 —  The arity  of (G, E)  is one if G is a tree and is one less than the size of a largest 
chordless  cycle in G, otherwise. 

PROOF: If G is a tree, then there is nothing to prove. Now, let k be the size of a largest chordless  

cycle C in G. It is clear that the arity  is at most k —  1. On the other hand, let S =  E(C)  —  {e} 

for some edge e of C and suppose S'  C 5,5' #  S. Then for any C' E Ce,  I C/  fl  SI < —  2. 

Therefore, S' E E, but S E. Thus, the arity  is greater than k— 2 and so the arity  of (G, £)  =  k— 1. 

Note: In literature, there are not many examples of convexity spaces of arity  greater than two. 

Definition 5 —  [7] A convexity space X is a matroid  if it satisfies the exchange law, for any 

convex set C C X and a, b E X —C,a  E Co(C  U {b}) implies that b E Co(C  U {a}). 

Definition 6 —Anon empty set F of X is convexly independent if x ¢  Co(F  —  {x}) for each 

R E F. 
Note: If X is a matroid,  there exists a maximal independent subset of X called a basis and its 

cardinality,  the rank. 

Theorem 2 —  If G is a connected graph of order p, then (G, E) is a matroid  of rank p —  1. 

PROOF: It follows that (G, e)  is a matroid,  by the definition of cyclic convexity. Now, let T be 

a spanning tree of G and let F =  E(T)  and let e E F. 

Claim —  e Co(F  —  {e}). 

e E Co(F  —  {e}) implies that there is a cycle C E C such that C —  {e} C F —  {e} which 

implies C C F, a contradiction. Therefore, F is independent. Hence, rank of (G, e)  >  p —  1. Now, 

if IF1  >  p then F contains a cycle and hence it is convexly dependent. So, the rank is p —  1. 0  



3. CONVEX INVARIANTS 

le  convex invariants of .a convexity space X are defined as follows [7]. 

The Helly  number of X is the smallest number n such that n{Co(F  —  {a}) :  a E F} (that 

F is Helly  ( H—) dependent) for all F C X with IF1  >  n. 

The Radon number of X is the smallest number n such that each F C X with IF1  >  n can be 

trtitioned  into S1 and S2 such that Co(Si)  fl  co(s2)  0.  (that is, F is Radon (R—) dependent). 

The Caratheodory  number of X is the smallest number n such that Co(F)  =  U{Co(F  —  {a}) 

E F} (that is, F is Caratheodory  (C--) dependent) for all F C X with 1F1  >  n. 

The exchange number of X is the smallest number n such that for F C X, IFI  >  n and p E F, 
o(F  —  {p})  u{co(F  -  {a}) :  a E F} (that is, F is exchange (E—) dependent). 

Theorem 3 —  Let G be a connected graph of order p, then the Helly  number of (G, E), 

PROOF: Let T be a spanning tree of G and F =  E (T )  .  We prove that F is Helly  independent. 

Suppose n{Co(F  —  {e}) :  e E F}  0.  Let e E F,  E Co(F  —  {e}) and e'  F. Then, 

ere is a cycle C in G such that C —  C S =  F —  fel.  

Now, suppose that e' E n{Co(F  —  {e}) :  e E F} where e' =  uv.  Then e'  e for any e E  F. If 
e2 E F then there exist cycles Cl  and C2 in G such that Cl  —  C F —  el and C2 —  C F —  e2. 

ien  the cycle C comprising the paths Cl  —  e' and C2 —  e' is in T which is a contradiction. 

Hence n{Co(F  —  {e}) :  e E F} =  0.  So F is Helly  independent. Therefore h(G)  >  p —  1. 

Now, suppose IF)  >  p. Then F contains a cycle C in G. Then e' E Co(F  —  {e'} for any e' E C 
id hence e' E Co(F  —  {e}) for any e E F, which implies that C C n{Co(F  —  {e}) :  e E F}. 

lerefore,  F is Helly  dependent and so h(G)  <  p. Thus, h(G)  =  p —  1. 

Theorem 4 —  The Caratheodory  number of (G, e)  is given by, c(G)  =  1 if G is a tree and 
irc(G)  —  1 otherwise, where Circ(G),  the circumference of G is the length of a largest cycle in 

PROOF: If G is a tree, then every subset of E is convex. So for each F C E with IF!  >  1 ,  we 

Lye  Co(F)  =  F =  U{F  —  {a} :  a E F}  U{Co(F  —  {a}) :  a E F}. Hence c(G)  =  1. 

Now, let C be a longest cycle of length k and S =  E(C).  Let C =  al —  el  —  a2 —  e2 —  •••  

-1  —  ak  —  ek  —  al,  where ai  s are vertices and ei  s are edges. Let Si =  S —  feil,  i  =  1, 2, ...,  k. 

Claim —Si is C-independent. 

Here Co(Si)  =  S because IC fl  Si d =  Isil  =ICS  —  1. We have Co(Si)  =  E(C)  =  S. But 

Co(Si  —  e) for any Si. Hence S =  Co(Si) U{Co(Si  —  e) :  e E Therefore Si  is 

-independent:So  c(G)  >  ISil  =  ISI  1 =  Circ(G)  —  1 =  k —1. 



Now, if F C E, IF1  >  k and if e E Co(F)  then there is a cycle C in G such that e E C and 

C—eC  F. 

If C—eF,  there is an edge e' E F which is not in C. Then C —  e C F— e' and hence 

e E C =  Co(C  e) c Co(F  —  e'). Thus Co(F)  C U{Co(F  e) :  e E F}. 

If C —  e =  F then ICI =  I FI  1, which is a contradiction because Circ(G)  =  k. 

Theorem 5 —  Let G be a connected graph of order p, then the Radon number of (G, E), 
r(G)  =  p —  1. 

Theorem 6 —  Let G be a connected graph. The exchange number of (G, E),  e(G)  =  2, if G is 
a tree or a cycle and is max{Circ(G  —  v) :  v E G}, otherwise. 

PROOF: Case I —  Let G be a tree. Then every subset F of E(G)  is convex. If I F'  <  2, let 

F =  {ei ,  e2}. Then F— {el} is not a subset of F— {e2}. Hence F is E-independent. If I FI  >  3, let 

F =  {e l , e2,  • en ,  P},  n >  2. Then Co(F  —  {p}) =  F —  {p} =  {el, e2, • • • en}  
C  U{F  —  fed  

i  =  1, 2....}. So, Co(F  {p} C U{F  —  {e} :  e #  p, e E F. 

Case II —  Let G be a cycle. Then either F =  E or F has no subset comprising a cycle. If 

F =  E, Co(F  —  {e}) =  F for each e E F. If F E, since F has no subset comprising a cycle, 

each proper subset of F is convex, so that the proof is same as that of Case I. Thus, in both these 

cases e(G)  =  2. 

Case III —  Let G be a graph having a cycle C and a vertex v ct  C. 

Assume that C is a largest cycle such that there is a vertex v I%  C. Let C=ai—ei  —  a2 —  e2 —  • • • —  

an_i  —  en-1 —  an  —  en  —  al where ais  are vertices and ei  s are edges between ai  and ai±i.  Let e be 

any edge incident on v and let S =  {el , e2, en_i,  e}. Then en  C  Co(S  —  e), but en  Co(S  —  ei )  
for i  n. Hence S is E-independent and e(G)  >  n. Now, if S =  {el, e2, m >  n 1, let 

e E Co(S  —  ei )  for some i.  Then there is a cycle C in G such that e E C and C —  e C S— ei .  If 

C —  e =  S —  ei ,  ICI =  ISI  >  n +  1, which is a contradiction. Hence there is some ej  E S —  ei  
such that ej  E C and so e E Co(S  —  ej).  Therefore, S is E-dependent and e(G)  <  n +  1. Thus 

e(G)  =  n. 
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