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In this paper, a convexity for the edge set of agraph G = (V, E) isdefined. It isa matroid of
rank p— 1wherelV (G) | = p and itsarity isnot in general two. The classical convex invariants
arealso evaluated.
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1. INTRODUCTION

For the vertex set of a connected graph G = (V, E) different types of convexities have been studied.
All are path convexities and areinduced by suitable interval operators, hencethey are called interval
convexity spaces. The arity of such convexity spacesistwo [7]. Most widely studied are geodesic
convexity and induced path (minimal path) convexity. Van de vel [7] has given a detailed account
of combinatorial convexity theory in graphs and other discrete structures. Some other contributions
on theselinesare[1] to[6].

In this paper, we have two aims:

1. Toextend the convexity notionsto the edge set of a graph.
2. Tostudy the properties of convexity spaces of arity greater than 2.

All basic graph theoretic and convex theor etic concepts are from [7].

In this paper we define cyclic convexity for the edge set of agraph. It isa matroid of
rank p — 1. Classical convex invariants-Helly number, Radon number, Caratheodory number and
exchange number are also evaluated.
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2.CYCLIC CONVEXITY

finition 1 — [7] Let X be a non-empty set. A collection C of subsetsof X iscalled a convexity

X E C, isclosed for intersections and for chained unions. The pair ( X, C) is called a convexity
ice.

Membersof C arecalled convex sets. For any set S C X the convex hull of S isthe smallest
avex set containing S and isdenoted by Co(.S).

Definition 2 — [7] A convexity space X isof arity < n if its convexity is determined by
solytopes.

That is, asubset C of X isconvex if and only if Co(F') C C for each subset F of X of
dinality at most n.

Let G beagraph with edgeset E. Let C denotethe collection of cyclesand C. denotethe

lection of chordless cyclesof G andlet E={S C E: C € CandICNSlI >ICI —1implies
CSlandé = CE:Ce€eC(C.andICnSl >ICl —1limpliesC C SI.

Lemmal — E=€£..

PROOF: It isobviousthat £ C £, . Conversely, supposethat S E £, and let C bethe cycle of
gth Kk suchthat IC n S| = ICl, thenitisclear that C C S. IfICN S| =ICIl — 1, suppose that
NS =C — {e} and C isnot induced. Otherwise C E C. and C C S isclear. Assumethat

all cyclesC' withIC'| < |ClandwithIC'N S| > |C'| =1, C S. Now, any chord ¢' of C
;ether with some path of C — {€} formsacycleC' of length k' < K with IC'N S| > -1,
ichimpliesthat &' E S. Thus, all chordsof C arein S. The edge e belongs to some chordless
:le C" induced by some of theverticesof C with |C' | <ICI. AlsoIC" N S| > |[C"| -1 =>
'CS=>e ES=>C CS=>SES.Hence, £&_CE.

Definition 3 — The collection £ formsa convexity on E and iscalled the cyclic convexity.
Note: This convexity spaceisdenoted by (G, £).
In other words, S C E isconvex if and only if for any cycleC inG, C C S whenever C—e C S

anye E C. For any SoC E, Co(Sy) ={€: E Soor C —¢€ C Sofor somecycleC in G}.
Examples —

1. For atree T every subset of E(T') istrivially convex.

2. Inthegraph G.

Now, we shall consider a generalization of the notion of geodesic iteration number of an interval
vexity space to a convexity space of arity greater than two.

Definition 4 — Let X be a convexity space of arityn,n >2and S C X. Theclosureof S,
toted by (S)isdefined as (S) = |J{Co(F) : F C X,|F| < n}.S™ isrecursively defined as,
= (5),8™ = (S™ ).Thesmallest positiveinteger m such that S™t" = S™jscalled the
ation number of S. Theiteration number of X is defined to be the maximum iteration number of
ScX



FIG. 1. {e,, €2, e3}, {e2, €5, €8} areconvex, but {e,, €, €g} isnot convex.

Lemma 2 —Theiteration number of (G, E) is1.

PROOF: Let S C E. It sufficestoprovethat 52 C S . Let e E S°. Then, thereisC E C, such
that C — {e} ¢ S' = (9).

Lete E C — {e}. Then E(C) — {e €} isconvex. Hencee  Co(E(C) —{e, €}). Now,
¢' E Stimpliesthat thereexist acycleC' E C. suchthat C' — {€} C S. Then,C —{e}UC'—{€}
isacycleC" inC suchthat C" — {e} C S, which impliesthat eE S .Thus S = S and sothe
iteration number is 1.

Theorem 1 — The arity of (G, £) is one if G is a tree and is one less than the size of a largest
chordless cycle in G, otherwise.

PROOF: If G isatree, then thereisnothing to prove. Now, let K bethe size of a largest chordless
cycleC in G. Itisclear that the arity isat most K — 1. On theother hand, let S = E(C) — {e}
for someedge € of C and suppose S’ C 5,5" # S. Thenforany C' EC,, |C NSl < - 2.
Therefore, S' E E,but S E. Thus, thearity isgreater than kKA 2 and so the arity of (G, £) = KA 1.

Note: In literature, there are not many examples of convexity spaces of arity greater than two.

Definition 5 — [7] A convexity space X isa matroid if it satisfiesthe exchange law, for any
convexset C C X anda,h E X — C, a E Co(C U {b}) impliesthat b E Co(C U {a}).

Definition 6 —Anon empty set F of X isconvexly independent if X € Co(F — {x}) for each
RE F.

Note: If X isa matroid, there exists a maximal independent subset of X called a basisand its
cardinality, the rank.

Theorem 2 — If G is a connected graph of order p, then (G, E) is a matroid of rank p — 1.

PROOF: It followsthat (G, £) isa matroid, by the definition of cyclic convexity. Now, let T be
aspanningtreeof G and let F = E(T') and let eE F.

Clam — e Co(F — {€}).
e E Co(F — {€}) impliesthat thereisacycle C E C suchthat C — {e} C F — {€} which

impliesC C F, acontradiction. Therefore, F isindependent. Hence, rank of (G, £) > p — 1. Now,
if || > pthen F containsa cycle and henceit is convexly dependent. So, therank is p — 1. a



3. CONVEX INVARIANTS

1e convex invariants of .a convexity space X are defined asfollows[7].

The Helly number of X isthe smallest number n such that (\{Co(F —{a}) : aE F} (that
F isHelly (HA) dependent) for all F C X with |F| > n.

The Radon number of X isthe smallest number n such that each F C X with |F| > n can be
irtitioned into S1 and S2 such that Co(S1) N Co(S,)  ¢. (thatis, F isRadon (RA) dependent).

The Caratheodory number of X isthe smallest number n such that Co(F) = [J{Co(F —{&a})
E F} (thatis, F isCaratheodory (C--) dependent) for all F C X with lF\ >n.

The exchange number of X isthe smallest number n such that for F C X, |F| > nand p E F,
olF —{p}) U{Co(F —{a}) :aEF} (thatis, F isexchange (EA) dependent).

Theorem 3 — Let G be a connected graph of order p, then the Helly number of (G, E),

PROOF: Let T be aspanning treeof G and F = E (T ). We provethat F is Helly independent.

Suppose ({{Co(F —{e}) :eEF} ¢.Lete EF, E Co(F —-{e})ande F. Then,
ereisacycleC inG suchthat C — < S =F — {e}.
Now, supposethat € E ({Co(F —{e€}) : e E F} wheree' = uv. Thene' efor anye € F. If

e2 E F then thereexist cyclesCyand C2inG suchthat C; — CF - andC2—- CF —e2.
1en the cycle C comprising the paths C, —¢' and C2 — ¢ isin T which is a contradiction.

Hence {Co(F —{e€}) : e E F} = ¢. So F isHelly independent. Therefore h(G) > p — 1.

Now, suppose |F'| > p. Then F containsacycleC inG. Thene' E Co(F —{€} foranye' EC
idhencee E Co(F — {e€}) for any eE F, whichimpliesthat C C ({Co(F — {€}) : e E F}.
1erefore, F is Helly dependent and so h(G) < p. Thus, h(G) =p — 1.

Theorem 4 — The Caratheodory number of (G, £) is given by, ¢(G) =1 if G is a tree and
irc(G) — 1 otherwise, where Circ(G), the circumference of G is the length of a largest cycle in

PROOF: If G isatree, then every subset of E isconvex. So for each F C E with |F| > 1, we
veCo(F)=F =U{F —{a :aEF} |U{Co(F —{a}):aEF}.Hencec(G) =

Now, let C bealongest cycleof lengthk and S = E(C). LetC =al —e; —a2 —e2 — ...
~1 —ar —e; —a;, Wwherea; sareverticesand e; sareedges. Let S = S — {e;},1 =1, 2, ..., k.

Claim ASi is C-independent.

Here Co(S;) = S because IC N §ji = |S;| = |C| — 1. Wehave Co(S;) = E(C) = S. But

Co(S; —e) forany Si. Hence S = Co(S;) U{Co(S, —¢) : e E Therefore S; is
-independent. Soc(G) > |S;| =|S| A= Circe(G) —1 =k Al



Now, if F C E,|F| > K andif eE Co(F) thenthereisacycleC in G suchthate E C and
C—-eCF.

If C —e # F, thereisan edge e’ E F whichisnotin C. ThenC —e C FA ¢e' and hence
eEC =Co(C e€)c Co(F —¢"). ThusCo(F)C J{Co(F €) :e E F}.

If C —e = F thenICl = |F| 1, which is a contradiction because Circ(G) = K.

Theorem 5 — Let G be a connected graph of order p, then the Radon number of (G, E),
r(G)=p-1.

Theorem 6 — Let G be a connected graph. The exchange number of (G, £), e(G) = 2,if G is
a tree or a cycle and is maz{Circ(G — V) : v E G}, otherwise.

PROOF: Case | — Let G be atree. Then every subset F of E(G) isconvex. If |F| <2, let
F = {e,,e2}. Then FA {e, }isnot asubset of FA{e,}. Hence F is E-independent. If |F| > 3, let
F={e e =e,p},n>2ThenCo(F —{p})=F —{p} ={d,e2, cseen} C U{F — {ei}
i=1,2.).5,Co(F{p} C U{F —{e}:e#peEF.

Case Il — Let G beacycle. Then either F = E or F has no subset comprising acycle. If
F =E,Co(F —{e}) = Fforeache E F. If F EE, since F has no subset comprising acycle,
each proper subset of F isconvex, so that the proof is same as that of Case|. Thus, in both these
casese(@) = 2.

Case Il — Let G beagraph having acycle C and avertex v ¢ C.

Assume that C isalargest cycle such that thereisavertexv ¢ C. Let C=a;—ej — a2 —e2—see—
@n-1— en-1— an — €, — a where a;s are vertices and e; s are edges between u; and a; 1. Let € be
any edgeincidentonvandletS = {e|,e2, e,._1,€} Thene, € Co(S—¢e),bute, Co(S—e,)
for i n. Hence S is E-independent and e(G) > n. Now, if S = {el, €2, m>nil, let
eE Co(S — e,) for somei. ThenthereisacycleC in G suchthateECandC —e CS—e,. If
C —e =S —e,ICl = |S] >n + 1, whichisacontradiction. Hence thereissome e, E S — e,
suchthat e, E C andsoe E Co(S — ¢,). Therefore, S is E-dependent and e(G) < n + 1. Thus
e(G) =n.
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