C 25917

(**Pages : 3**)

Name	•••
------	-----

Reg. No.....

SECOND SEMESTER B.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION APRIL 2017

(UG-CCSS)

Complementary Course

MM 2C 02-MATHEMATICS

Time : Three Hours

Maximum : 30 Weightage

Answer all questions.

- 1. Integrate sech² $\left(x \frac{1}{2}\right)$.
- 2. $\tanh^2 x = 1 ----$
- 3. Show that $\cosh 2x = \cosh^2 x + \sinh^2 x$.
- 4. $\lim_{n\to\infty}\frac{\ln(n)}{n}=----.$
- 5. Give an example of a constant sequence.
- 6. State n^{th} Root Test.
- 7. Find the Taylor polynomial of order zero generated by $f(x) = \sin x$ at $x = \frac{\pi}{4}$.
- 8. If $f(x) = \frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$ Find the series for $f^1(x)$.
- 9. Define Absolute convergence.

10. If
$$f(x, y) = x \cos y + y e^x$$
 find $\frac{\partial^2 f}{\partial x^2}$.

- 11. Evaluate $\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$.
- 12. Differentiate $\tanh \sqrt{1+t^2}$.

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Turn over

Answer all the questions.

13. Evaluate
$$\int_{0}^{1} \sinh^2 x \, dx$$
.

14. Evaluate
$$\int_{\frac{-\pi}{1}}^{\pi} \cosh(\tan\theta) \sec^2\theta d\theta$$
.

15. Investigate the convergence of $\int_{0}^{3} \frac{dx}{(x-1)^{2/3}}.$

- 16. Evaluate $\int_{-\infty}^{\infty} \frac{2x \, dx}{\left(x^2 + 1\right)^2}.$
- 17. Given $a_1 = 2$, $a_{n+1} = (-1)^{n+1} \frac{a_n}{2}$. Write the first four terms of the sequence.
- 18. For what values of x do the power series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges absolutely.
- 19. Graph the set of points whose polar co-ordinates satisfy the conditions $r \leq 0$ and $\theta = \frac{\pi}{4}$.

20. Find
$$f_x$$
 if $f(x, y) = \frac{2y}{y + \cos x}$.

21. Find an equation for the hyperbola with eccentricity $\frac{1}{2}$ and directrix x = 2.

 $(9 \times 1 = 9 \text{ weightage})$

Answer any five questions.

22. Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w = x + 2y + z^2$, $x = \frac{r}{s}$, $y = r^2 + \ln s$, z = 2r.

- 23. Find the derivative of $f(x, y) = x e^{y} + \cos(x, y)$ at the point (2, 0) in the direction of A = 3i 4j.
- 24. Find the linearization of $f(x, y) = x^2 xy + \frac{1}{2}y^2 + 3$ at the point (3, 2).

25. Find :

$$\lim_{(x,y)} \to (0,0) \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}}.$$

- 26. Find a polar equation for the circle $x^2 + (y 3)^2 = 9$.
- 27. Find the Taylor series generated by $f(x) = x^4 + x^2 + 1$ at a = 2.
- 28. Investigate the convergence of the series $\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n}$.

 $(5 \times 2 = 10 \text{ weightage})$

Answer any two questions.

29. Show that the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \dots + \frac{1}{n^p} + \dots + (p \text{ in a real number}) \text{ converges if } p > 1$

and diverges if $p \leq 1$.

- 30. Find an upper bound $|\mathbf{E}|$ of the error in the approximation $f(x, y) \approx \mathbf{L}(x, y)$ over the rectangle $\mathbf{R}: |x-2| \le 0.1, |y-1| \le 0.1$ for $f(x, y) = x^2 - 3xy + 5$.
- 31. Find the area inside the smaller loop of $r = 2\cos\theta + 1$.

 $(2 \times 4 = 8 \text{ weightage})$