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Abstract. C.T.  Aage  and J.N.  Salunke  proved fixed point theorems in fuzzy metric 
spaces for occasionally weakly compatible self maps. Guangpeng  Sim and Kai Yang 
proved fixed point theorems in generalized Q-fuzzy metric spaces for weakly com-
patible self maps.This  paper presents common fixed point theorems in generalized 
Q-fuzzy metric spaces for occasionally weakly compatible self maps. 
Key Words: Q-fuzzy metric space, generalised Q-fuzzy metric spaces, weakly com-
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1. Preliminary Notes 

DEFINITION 1.1. Let X be a nonempty  set and let G :  X xX  xX R+ be a 
function satisfying the following: 

• G(x,y,z) ,----Oifx.y.z  

• O< G(x,x,y)  for all x, y €  X with x 4 
 y 

• G(x,  x,  <  qx,y  ,  z) for all x, y, z in X with z  y 

• G(x,  y, z) =  G(x,  z, y) =  G(y,  z, x) =  .  .  .  (symmetry in all three variables) 

• C(x,  y, G(x,  a, a) +  G(a,  y, z) for all x, y, z, a E X (Rectangle inequality). 
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Then the function is called a generalized metric, or, more specifically a G-metric  on X 
and the pair (X, G)  is a G-metric space. 

Example. Let (X, d) be ametricspace.Then  G :  X x X x X -4 R±  defined by 
G(x,  y, z) =  d(x,  y) +  d(y,  z) +  d(x,  z). Then (X, G)  is a G-metric  space. 

DEFINITION 1.2. A fuzzy set A in X is a function with domain X and values in [0, 1] 

DEFINITION 1.3. A binary operation *  :  [0,1] x [0, 1] —+  [0,1] is a continuous t-norm 
if *  satifies  the following conditions: 

• *is commutative and associative 

• *is continuous 

• a* 1 =  a for all a E [0, 1] 

• a*b<c*dwhenevera<candb<dforalla,b,c,de  [0, 1]. 

2. Q-Fuzzy Metric Spaces 

DEFINITION 2.1. A 3- tuple  (X ,Q ,  *)  is called a Q-fuzzy metric space if X is an 
arbitrary set,* is a continuous t-norm and Q is a fuzzy set in X3  x (0, oo)  satisfying 
the following conditions for each x, y, z, a E X and t, s >  0: 

• Q(x,  x, y, t) >  0 and Q(x,  x, y, t) C Q(x,  y, z, t) for all x, y, z e X with z  y 

• Q(x,y,  z, t) =  1, for all t >  0 if and only if x =  y =  z 

• Q(x,  y, z, t) =  Q(p(x,  y, z), t) (symmetry), where p is a permutation function 

• Q(x,  a, a, t) *  Q(a,  y, z, s) <  Q(x,  y, z, t +  -s) 

• Q(x,  y, z, .)  :  (0, oo)  -4 [0, 1] is continuous. 

• Q-fuzzy metric space can be considered as a generalization of fuzzy metric space. 

EXAMPLE 2.2. Let X is a non empty set and G is the G-metric on X. The t-norm is 
a *  b =  ab  for all a,b  E [0,1]. For each t >  0Q(x,y,  z, t) =  tit  +  G(x,  y, z) Then 
(X, Q, *)  is a fuzzy Q-metric. 

LEMMA 2.3. If (X, Q, *)  be a Q-fuzzy metric space, then Q(x,  y, z, t) is non-decreasing 
with respect to t for all x, y, z E X 

DEFINITION 2.4. Let (X, Q, *)  be a Q-fuzzy metric space. A sequence (xn)  in X 
converges to a point x E X if and only if Q(xTri ,  Xn ,x,t)  -4 1 as n  oo,  m oo.  

3. Occasionally Weakly Compatible (OWC)  Maps 

DEFINITION 3.1. For each t >  0. It is called a Cauchy sequence if for each 0 <E< 1 
and t >  0, there exists no E N such that Q(X,n ,  xn ,  xj)  >  1— E for each 1, m, ?I  >  
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3. A Q-fuzzy metric space in which every Cauchy sequence is convergent is said to be 
omplete.  

DEFINITION 3.2. Let f and g be self mappings on a Q-fuzzy metric space (X, Q, *).  
Then the mappings are said to be compatible lim{  n -4 oo}(fgxn,  g fxn,  g fxn,t)  =  
-  for all t >  0 whenever (x,,)  is a sequence in X such that lim{  n oo}  fxn  =  
y.  

mfn -4 oolgxn = z for some z in X. 

DEFINITION 3.3. Let X be a set. Let f and g be self maps on X. A point x in X is 
called  a coincidence point off and g if and only if fx  =  gx.  In this case w =  f x =  gx  
s called point of coincidence off and g. 

DEFINITION 3.4. A pair of self mappings (1, g) is said to be weakly compatible if 
:hey commute at the coincidence points,that  is if fu =  gu  for some u E X, then 
!gu  =  g fu. 

DEFINITION 3.5. Two self maps f and g of a set are occasionally weakly compatible 
owc)  iff there is a point x in X which is a coincidence point off and g at which f and 
commute. 

LEMMA 3.6. Let X be a set, f, gowc  self maps of X. If f and g have a unique point 
,9f  coincidence, w =  fx  =  gx,  then w is the unique common fzxed  point off and g. 

THEOREM 3.7. Let (X ,Q,*) be a complete generalized Q-fuzzy metric space and let 
.4, B, S and T be self mappings of X. Let the pair {A, S} and {B, T} be occasionally 
weakly compatible (OWC).  If there exist a k E (0, 1) such that for every x, y, z E X 
and t >  0 

Q(Ax,  By, Bz,  kt)  >  min {Q(Sx,  Ty, Tz,  t), Q(Sx,  By, Tz,  t), Q(By,  Ty, Tz,  t), 

Q(Ax,  Ty, Tz,  t), Q(Ax,  Ty, Bz,  t)}.  (3.1) 

Then there exists a unique common fixed point of A, B, S and T 

Proof. The pair of self mappings A, S and B, T be occasionally weakly compat-
ible (OWC).  So there exist points x, y E X such that Ax =  Sx  and By =  Ty. First 
claim that Ax =  By. If not by inequality (3.1). 

Q(Ax,  By, By, kt)  >  min {Q(Sx,  Ty, Ty, t), Q(Sx,  By, Ty, t), Q(By,  Ty, Ty, t), 
Q(Ax,Ty,Ty,t),Q(Ax,Ty,By,t)}  

=  min {Q(Ax,  By, By, t), Q(Ax,  By, By, t), Q(By,  By, By, t), 

Q(Ax,  By, By, t), Q(Ax,  By, By, t)} 

Q(Ax,By,By,t)  

which is a contradiction. Therefore Ax =  By, i.e., Ax =  Sx  =  By =  Ty. 

Let there exist another point z such that Az =  Sz.  Then by inequality (3.1) we 
have Az =  Sz  =  By =  Ty. Therefore Ax =  Az. i.e., w =  Ax =  Sx  is the unique 
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point of coincidence of A and S. Then by Lemma 3.6 w is the common fixed point 
A and S. Similarly there is a unique point z E X such that z =  Bz  =Tz.  

Assume that w  z. We have 

Q(w,  z, z,kt)  =  Q(Aw,  ,  Bz,  Bz,  t) 

>  min{Q(Sw,  Tz,  Tz,  t), Q(Sw,  Bz,  Tz,  t), Q(Bz,  Tz,  Tz,  t), 

Q(Aw,  Tz,  Tz,  t), Q(Aw,  Tz,  Bz,  t)} 

=  min{Q(w,  z, z, t), Q(w,z,z,t),Q(z,z,z,t),C2(w,z,z,t),Q(w,z,z,t  

Q(w,  z, z ,t) 

Hence z =  w and z is a common fixed point of A, B, S and T. To prove uniqueness. 
let z' be another common fixed point of A, B, S and T. If z  x'. We have 

Q(z'  ,  z, z,kt)  =  Q(Az i  ,  B2, B z, t) 

min{Q(Sz',  Tz,  Tz,  t), Q(Sz',  Bz,  Tz,  t), Q(Bz,  Tz,  Tz,  t), 

Q(Az',  Tz,  Tz,  t), Q(Az',  Tz,  Bz,  t)} 

=  min{ Q(z'  ,  z, z, t), Q(z' ,  z, z, t), Q(z,  z, z, t), 

Q(z',  z, z,t),Q(z'  ,  z, z, t)} 

Q(z',  z, z, t) 

Which is a contradiction.Hence  z =  z', ie  z is a unique common fixed point of A, B. S 
and T. 0 

THEOREM 3.8. Let (X, Q,*) be a complete generalized Q-fuzzy metric space and let 
A, B, S and T be self mappings of X.Let  the pair {A, S} and {B, T} be occasionally 
weakly compatible (owc).  If there exist a k E (0, 1) such that for every x, y, z E X and 
t >  0 

Q(Ax,  By, Bz,  kt)  >  min{Q(Sx,  Ty, Tz,  t) ,  Q(Sx,  By, Tz,  t), Q(By,  Ty, Tz,  t).  
Q(Ax,  Ty, Tz,  t), Q(Ax,Ty,Bz,t)1).  (3.2!  

For all x, y, z E X and such that (t) >  t for 0 <  t <  1 and (1) =  1 Then there exists 
a unique common fixed point of A, B, S and T 

Proof The pair of self mappings {A, S} and {B, T} be occasionally weakly 
compatible (owc).  So there are pointsx,y  E X such that Ax =  Sx  and By =  Ty. We 
claim that Ax =  By. If not by inequality (3.2) we have 

Q(Ax,  By, By, kt)  >  cp(minf  Q(Sx,Ty,Ty,t),Q(Sx,  By,Ty,t),  Q(By,Ty,Ty,  

Q(Ax,Ty,Ty,t),Q(Ax,Ty,By,t)})  

=  (p(minfQ(Ax,  By, By, t), Q(Ax,  By, By, t), Q(By,  By, By, t), 

Q(Ax,  By, By, t), Q(Ax,  By, By, t)}) 
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(p(min{Q(Ax,  By, By, t), Q(Ax,  By, By,t),1,Q(Ax,  By, By, t), 
Q(Ax,  By, By, 

>  Q(Ax,  By, By, t) 

which is a contradiction.Therefore  Ax =  By, i.e., Ax =  Sx  =  By =  Ty. 

Let there exist another point z such that Az =  Sz.Then  by inequality (3.2) we 
have Az =  Sz  =  By =  Ty. Therefore Ax =  Az. i.e., w =  Ax =  Sx  is the unique 
point of coincidence of A and S. Then by Lemma 3.6 w is the common fixed point of 
A and S. Similarly there is a unique point z E X such that z =  Bz  =  Tz.  Assume 
that w  z. We have 

Q(w,z,  z, kt)  =  Q(Aw,  Bz,  Bz,  t) 
(min{ Q(Sw,Tz,Tz,t),C2(Sw,  Bz,  Tz,  t), Q(Bz,  Tz,  Tz,  t), 

Q(Aw,  Tz,  Tz,  t), Q(Aw,  Tz,  Bz,  t)}) 
co(min{Q(w,z,  z, t), Q(w,  z, z, t), Q(z,  z, z, t), Q(w,  z , z, t), Q(w,  z, z, t)}) 

ya(minf  Q(w,  z, z, t), Q(w,  z, z, t),1, Q(w,  z, z, t), Q(w,  z, z, 
>  Q(w,  z, z,t)  

Hence z =  w and z is a common fixed point of A, B, S and T. To prove uniqueness, 
let z' be another common fixed point of A, B, S and T. If z  z' We have 

Q(z' ,  z, z, kt)  =  Q(Az'  ,  Bz,  Bz,  t) 
cp(min{Q(Szi,  Tz,Tz,t),Q(Sz',Bz,Tz,t),Q(Bz,Tz,Tz,t),  

Q(Az',  Tz,  Tz,  t), Q(Az'  ,  Tz,  Bz,  t)}) 
=  (p(minfQ(zi,  z,t),Q(z'  z, z,t),Q(z,  z,t),Q(z'  ,  z, z,t),Q(z`  z, ;OD 

9::)(min{Q(zi ,  z, z, t), Q(z' ;0,17  Q(z',  z, t), Q(z'  z,  z, t)}) 

>  Q(z',  z, z, t) 

Which is a contradiction. Hence z =  z', i.e., z is a unique common fixed point of 
A, B, S and T. 0 
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