C 31166

(Pages: 3)

Name	
Reg. No	

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2017

(CUCBCSS—UG)

Complementary Course

STS 3C 03-STATISTICAL INFERENCE

Time : Three Hours

Maximum : 80 Marks

Section A

Answer all questions in one word. Each question carries 1 mark.

Name the following :

- 1. The process of making inference about the population based on samples taken from it.
- 2. The probability of rejecting null hypothesis when it is false.
- 3. The distribution used in testing goodness of fit.

Fill up the blanks :

- 4. An efficient estimator is an estimator with minimum ----
- 5. If X follow standard normal distribution, then $Y = X^2$ follows —
- 7. The standard deviation of any statistic is called its -

Write True or False :

- 8. If $t_n \xrightarrow{p} \theta$, then t_n is a sufficient estimator of θ .
- 9. Fisher-Neyman theorem helps to obtain sufficient estimator.
- 10. A statistical hypothesis which completely specifies the population is simple hypothesis.

 $(10 \times 1 = 10 \text{ marks})$

Turn over

Section **B**

Answer all questions in one sentence each. Each one carries 2 marks.

- 11. Define point estimator.
- 12. Define confidence coefficient.
- 13. Identify the distribution of the ratio of two independent standard normal random variables.
- 14. Define critical region.
- 15. Define consistent estimator.
- 16. State Fisher-Neymaan factorization theorem.
- 17. What is meant by paired *t*-test?

 $(7 \times 2 = 14 \text{ marks})$

Section C

Answer any **three** questions. Each one carries 4 marks.

- 18. Obtain the m.g.f. of a Chi-square random variable with n degrees of freedom.
- 19. Distinguish between one tailed and two tailed test.
- 20. Describe any two statistics following student's t-distribution.
- 21. Explain the method of maximum likelyhood estimation.
- 22. Explain the procedure of testing equality of variances.

 $(3 \times 4 = 12 \text{ marks})$

Section D

Answer any **four** questions. Each one carries 6 marks.

23. For a random variable of size 16 from $N(\mu, \sigma)$ population, the sample variance is 16.

Find a and b such that $P(a < \sigma^2 < b) = 0.60$.

- 24. Find the mode of a random variable follow t-distribution with n degrees of freedom.
- 25. Explain the method of moment estimation. List the properties of a moment estimator.
- 26. Derive the confidence interval for the variance of a normal population.
- 27. In a sample of 60 items, 8 are damaged. Construct a 95% confidence interval for the true proportion of damaged items.
- 28. Explain the method of Chi-square test of independence.

 $(4 \times 6 = 24 \text{ marks})$

Section E

Answer any **two** questions. Each one carries 10 marks.

- 29. (i) If t follows t-distribution with n degrees of freedom, prove that $Y = t^2$ follows F (1, n).
 - (ii) Derive a statistic following F-distribution.
- 30. Use Neymaan-Pearson Theorem to find a most powerful test with significance level α for testing the hypothesis $H_0: \mu = \mu_0$ against, $H_1: \mu = \mu_1, (\mu_1 > \mu_0)$ using a random sample $x_1, x_2, ..., x_n$ drawn

from the population with pdf $f(x) = \frac{1}{\sqrt{18 \pi}} e^{-\frac{1}{18}(x-\mu)^2}, -\infty < x < \infty.$

- 31. Explain Chi-square test of goodness of fit. The theory predicts the proportion of beans in the four groups A, B, C and D should be 9:3:3:1. In an experiment among 1600 beans, the members in the four groups were 882, 313, 287 and 118. Does the experimental result support the theory?
- 32. (i) Explain the method of small sample testing of equality of means of two normal populations when the population standard deviations are unknown.
 - (ii) Gain in weights for two groups of rates fed on two types of diets are as follows :

Diet A	:	13	14	10	11	12	16	10	8	
Diet B	:	7	10	12	8	10	11	10	9	11

Test the effect of diet in gain in weights at 5% level of significance.

 $(2 \times 10 = 20 \text{ marks})$