FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2018

(CUCBCSS-UG)
 Complementary Course-Mathematics
 MAT 1C 01-MATHEMATICS

Time : Three Hours
Maximum : 80 Marks

Part A

Answer all twelve questions. Each question carries 1 mark.

1. Suppose $\lim _{x \rightarrow c} f(x)=5$ and $\lim _{x \rightarrow c} g(x)=-2$, find $\lim _{x \rightarrow c} 2 f(x) g(x)$.
2. Find $d y$ if $y=\cos 3 x+x^{4}$.
3. Write the sum without sigma notation : $\sum_{k=1}^{1} 0 k^{2}+3 k$.
4. Find the interval in which the function $y=x^{3}$ is concave up.
5. Find absolute extrema of $y=x^{2}$ on $(0,2)$.
6. Find $\lim _{x \rightarrow-1} \frac{-1}{(1-x)^{3}}$.
7. Define vertical asymptote.
8. $\frac{d}{d x} \int_{-\pi}^{x} \cos t d t=\ldots \ldots$.
9. Express the limit $\lim _{\|\mathrm{P}\| \rightarrow 0} \sum_{k=1}^{n} \frac{1}{1-c_{k}} \Delta x_{k}$ where P is the partition of $[2,3]$ as an integral.
10. State Mean Value Theorem.
11. Find all possible functions with derivative $y^{\prime}=x^{3}$.
12. Shortest interval length of a partition is called

$$
(12 \times 1=12 \text { marks })
$$

Part B (Short Answer Type)

Answer any nine questions.
Each question carries 2 marks.
13. Show that if $\lim _{x \rightarrow c}|f(x)|=0$, then $\lim _{x \rightarrow c} f(x)=0$.
14. If $\sqrt{5-2 x^{2}} \leq f(x) \leq \sqrt{5-x^{2}}$ for $-1 \leq x \leq 1$, find $\lim _{x \rightarrow 0} f(x)$.
15. If $\lim _{x \rightarrow-2} \frac{f(x)}{x^{2}}=1$, find $\lim _{x \rightarrow-2} \frac{f(x)}{x}$.
16. Find the slope of the curve $y=1 / x$ at $x=a$.
17. Differentiate $f(x)=\frac{x}{x-1}$. Where does the curve $y=f(x)$ have slope -1 ?
18. Show that $y=-x-$ is not differentiable at $x=0$.
19. Find the equation for the tangent to the curve $y=x+\frac{2}{x}$ at $(1,3)$.
20. Find absolute extrema of $y=x^{2 / 3}$ on $[-2,3]$.
21. Find the function whose derivative is $\sin x$ and whose graph passes through the point $(0,2)$.
22. Show that $\lim _{x \rightarrow \infty} \frac{1}{x}=0$.
23. Show that if f is continuous on $[a, b], a \neq b$ and if $\int_{a}^{b} f(x) d x=0$, then $f(x)=0$ at least once in $[a, b]$.
24. Express the solution of the initial value problem $\frac{d y}{d x}=\tan x, y(1)=5$ as an integral.

$$
(9 \times 2=18 \text { marks })
$$

Part C (Short Essay Type)

Answer any six questions.
Each question carries 5 marks.
25. Show that the line $y=m x+b$ is its own tangent at any point $\left(x_{0}, m x_{0}+b\right)$.
26. When does a function not have a derivative at a point ? Explain.
27. Show that if f has a derivative at $x=c$, then f is continuous at $x=c$.
28. Show that functions with same derivatives differ by a constant.
29. Find the asymptotes of the curve $y=\frac{x+3}{x+2}$.
30. Find $\lim _{x \rightarrow \infty} \frac{2 \sqrt{x}+x^{-1}}{3 x-7}$.
31. Find the area of the surface generated by revolving the curve $y=2 \sqrt{x}, 1 \leq x \leq 2$ about the x-axis.
32. Find $\lim _{x \rightarrow 0^{+}} \frac{\sqrt{h^{2}+4 h+5}-\sqrt{5}}{h}$.
33. Define $f(3)$ in a way that extends $f(x)=\frac{x^{2}-9}{x-3}$ to be continuous at $x=3$.

Part D (Essay Type)

Answer any two questions.
Each question carries 10 marks.
34. Find the critical points of $f(x)=x^{1 / 3}(x-4)$. Identify the intervals on which f is increasing and decreasing. Find the function's local and absolute extreme values.
35. Find the volume of the solid generated by revolving the regions bounded by the curve $x=\sqrt{5} y^{2}, x=0, y=-1, y=1$ about x-axis.
36. Let $f(x)= \begin{cases}\sqrt{1-x^{2}}, & 0 \leq x<1 ; \\ 1, & 1 \leq x<2 ; \\ 2, & x=2 .\end{cases}$
(a) What are the domain and range of f ?
(b) At what points c, if any, does $\lim _{x \rightarrow c} f(x)$ exist?
(c) At what points does only the left-hand limit exists?
(d) At what points does only the right-hand limit exists?

