D 52770

(Pages:4)

Name..... Reg. No....

Maximum : 80 Marks

FIRST SEMESTER B.C.A. DEGREE EXAMINATION, NOVEMBER 2018

(CUCBCSS-UG)

Complementary Course

BCA 1C 01-MATHEMATICAL FOUNDATION OF COMPUTER APPLICATIONS

(2014 Admissions)

Time : Three Hours

Part A (Objective Type)

Answer all **ten** questions. Each question carries 1 mark.

1. Give an example of a scalar matrix.

2. What is the value of α if $A = \begin{bmatrix} 1 & -1 \\ \alpha & 3 \end{bmatrix}$ is a singular matrix ?

3. If $|\vec{a}| = 3$, what is $|-2\vec{a}|$?

4. State the product rule of differentiation.

5. State whether the following statement is True or False :

|x| is derivable at x = 0."

6. Evaluate $\int_{0}^{\frac{\pi}{2}} \cos 2x \, dx$.

11

- 7. What is the integral of $\cos x + \sec^2 x$?
- 8. What is the order of the differential equation $\frac{d^2y}{dx^2} 2\left(\frac{dy}{dx}\right)^3 + y = 0$?
- 9. What are the roots of the auxiliary equation of $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0$?
- 10. Obtain a partial differential equation by eliminating the arbitrary constants a and b from the relation z = (x+a)(y+b).

 $(10 \times 1 = 10 \text{ marks})$

Turn over

Part B (Short Answer Type)

Answer all five questions. Each question carries 2 marks.

- 11. Find the value of λ such that the vectors $\vec{a} = 2\vec{i} + 3\vec{j} + 4\vec{k}$ and $\vec{b} = 3\vec{i} + 2\vec{j} \lambda\vec{k}$ are perpendicular.
- 12. Find the derivative of \sqrt{x} from the first principle.
- 13. Evaluate $\int \frac{x-5}{x^2-10x+11} dx$.
- 14. Solve the initial value problem xy' + y = 0, y(2) = -2.
- 15. Solve $(D^2 12D + 36) y = e^{-6x}$ where $D = \frac{d}{dx}$.

$(5 \times 2 = 10 \text{ marks})$

Part C (Short Essay Type)

Answer any five questions. Each question carries 4 marks.

16. Find the Eigen values of the matrix $\begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$.

- 17. If $A + B = \begin{bmatrix} 1 & -1 \\ 3 & 0 \end{bmatrix}$ and $A B = \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix}$, find AB.
- 18. State chain rule of differentiation of composite functions. Using chain rule find $\frac{dy}{dr}$ when $y = \frac{1}{4}v^4$ and $v = \frac{2}{3}x^3 + 5$.
- 19. Show that $\int_{0}^{\frac{\pi}{2}} \sin^2 x dx = \int_{0}^{\frac{\pi}{2}} \cos^2 x dx$ and hence show that each integral is $\frac{\pi}{4}$.

20. Solve (1 + x) y dx + (1 - y) x dy = 0.

21. (i) Write the general form of a first order linear differential equation.

(ii) Solve
$$\frac{dy}{dx} + y \tan x = \cos x$$
.

22. Solve
$$\frac{d^2y}{dx^2} + 4y = \sin 3x + e^x + x^2$$

23. Solve $\frac{d^2y}{dx^2} + y = xe^{2x}.$

 $(5 \times 4 = 20 \text{ marks})$

Part D (Essay Type)

Answer any five questions. Each question carries 8 marks.

24. Find the rank of the matrix $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & -2 & 1 \\ 2 & 0 & -3 & 2 \\ 3 & 3 & -3 & 3 \end{bmatrix}$ by reducing it to the row reduced echelon form.

25. Test for consistency and if consistent solve the system of equations :

x + z = -1- 2x + y = 1 y + z = -5.

26. (i) Find from the first principle, the differential co-efficient of $\frac{2x-3}{3x+4}$.

(ii) If
$$xy = ae^x + be^{-x}$$
, prove that $x \frac{d^2y}{dx^2} + 2 \frac{dy}{dx} - y = 0$.

Turn over

27. (i) Integrate $\frac{4x}{(x-2)(x-1)}$ by the method of partial fractions.

(ii) Evaluate
$$\int_{0}^{1} xe^{x} dx$$
.

28. Solve
$$(x^2 - y^2)\frac{dy}{dx} = 2xy$$
, given that $y = 1$ when $x = 1$.

- 29. Find the differential equation whose general solution is $y = A \cos(x^2) + B \sin(x^2)$ where A and B are arbitrary constants.
- 30. Solve $y'' 3y' + 2y = xe^{3x} + \sin 2x$.
- 31. Solve $(D^2 2D + 1)y = x \sin x$.

 $(5 \times 8 = 40 \text{ marks})$