$\qquad$

## Reg. No.

FIRST SEMESTER B.C.A. DEGREE EXAMINATION, NOVEMBER 2018
(CUCBCSS-UG)
Complementary Course
BCA 1C 01-MATHEMATICAL FOUNDATION OF COMPUTER APPLICATIONS
(2014 Admissions)
Time : Three Hours

Maximum : 80 Marks

> Part A (Objective Type)
> Answer all ten questions.
> Each question carries 1 mark.

1. Give an example of a scalar matrix.
2. What is the value of $\alpha$ if $A=\left[\begin{array}{rr}1 & -1 \\ \alpha & 3\end{array}\right]$ is a singular matrix ?
3. If $|\vec{a}|=3$, what is $|-2 \vec{a}|$ ?
4. State the product rule of differentiation.
5. State whether the following statement is True or False :
" $\quad|x|$ is derivable at $x=0$."
6. Evaluate $\int_{0}^{\pi / 2} \cos 2 x d x$.
7. What is the integral of $\cos x+\sec ^{2} x$ ?
8. What is the order of the differential equation $\frac{d^{2} y}{d x^{2}}-2\left(\frac{d y}{d x}\right)^{3}+y=0$ ?
9. What are the roots of the auxiliary equation of $\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=0$ ?
10. Obtain a partial differential equation by eliminating the arbitrary constants $a$ and $b$ from the relation $z=(x+a)(y+b)$.

## Part B (Short Answer Type)

Answer all five questions.

## Each question carries 2 marks.

11. Find the value of $\lambda$ such that vectors $\vec{a}=2 \vec{i}+3 \vec{j}+4 \vec{k}$ and $\vec{b}=3 \vec{i}+2 \vec{j}-\lambda \vec{k}$ are perpendicular.
12. Find the derivative of $\sqrt{x}$ from the first principle.
13. Evaluate $\int \frac{x-5}{x^{2}-10 x+11} d x$.
14. Solve the initial value problem $x y^{\prime}+y=0, y(2)=-2$.
15. Solve $\left(\mathrm{D}^{2}-12 \mathrm{D}+36\right) y=e^{6 x}$ where $\mathrm{D} \equiv \frac{d}{d x}$.

$$
(5 \times 2=10 \text { marks })
$$

## Part C (Short Essay Type)

Answer any five questions.
Each question carries 4 marks.
16. Find the Eigen values of the matrix $\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$.
17. If $A+B=\left[\begin{array}{cc}1 & -1 \\ 3 & 0\end{array}\right]$ and $A-B=\left[\begin{array}{ll}3 & 1 \\ 1 & 4\end{array}\right]$, find $A B$.
18. State chain rule of differentiation of composite functions. Using chain rule find $\frac{d y}{d x}$ when $y=\frac{1}{4} v^{4}$ and $v=\frac{2}{3} x^{3}+5$.
19. Show that $\int_{0}^{\pi / 2} \sin ^{2} x d x=\int_{0}^{\pi / 2} \cos ^{2} x d x$ and hence show that each integral is $\frac{\pi}{4}$.
20. Solve $(1+x) y d x+(1-y) x d y=0$.
21. (i) Write the general form of a first order linear differential equation.
(ii) Solve $\frac{d y}{d x}+y \tan x=\cos x$.
22. Solve $\frac{d^{2} y}{d x^{2}}+4 y=\sin 3 x+e^{x}+x^{2}$.
23. Solve $\frac{d^{2} y}{d x^{2}}+y=x e^{2 x}$.

## Part D (Essay Type)

Answer any five questions.
Each question carries 8 marks.
24. Find the rank of the matrix $\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 3 & -2 & 1 \\ 2 & 0 & -3 & 2 \\ 3 & 3 & -3 & 3\end{array}\right]$ by reducing it to the row reduced echelon form.
25. Test for consistency and if consistent solve the system of equations :

$$
\begin{aligned}
x+z & =-1 \\
-2 x+y & =1 \\
y+z & =-5
\end{aligned}
$$

26. (i) Find from the first principle, the differential co-efficient of $\frac{2 x-3}{3 x+4}$.
(ii) If $x y=a e^{x}+b e^{-x}$, prove that $x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-y=0$.

## Turn over

27. (i) Integrate $\frac{4 x}{(x-2)(x-1)}$ by the method of partial fractions.
(ii) Evaluate $\int_{0}^{1} x e^{x} d x$.
28. Solve $\left(x^{2}-y^{2}\right) \frac{d y}{d x}=2 x y$, given that $y=1$ when $x=1$.
29. Find the differential equation whose general solution is $y=\mathrm{A} \cos \left(x^{2}\right)+\mathrm{B} \sin \left(x^{2}\right)$ where A and B are arbitrary constants.
30. Solve $y^{\prime \prime}-3 y^{\prime}+2 y=x e^{3 x}+\sin 2 x$.
31. Solve $\left(D^{2}-2 D+1\right) y=x \sin x$.
