\qquad
\qquad

SECOND SEMESTER B.C.A. DEGREE EXAMINATION, MAY 2018

 (CUCBCSS--UG)Complementary Course
BCA 2C 04-OPERATIONS RESEARCH
(2017 Admissions)

Time : Three Hours
Maximum : 80 Marks

Section A
Answer all the questions.
Each question carries 1 mark.

1. Write any two advantages of linear programming problem.
2. How to check a transportation problem is balanced or not?
3. Explain basic feasible solution.
4. Explain Slack and Surplus variables.
5. What are the components of Linear Programming Problem?
6. Cite any two uses of Operations Research.
7. What is meant by critical path ?
8. Define Linear Programming Problem.
9. Define Optimal Solution.
10. Which method is used for solving Assignment problem.

> Section B
> Answer all the questions. Each question carries 2 marks.
11. State the fundamental properties of duality.
12. What is travelling salesman problem?
13. What are the advantages of Operations Research ?
14. Distinguish between PERT and CPM.
15. Define the terms : (a) Non negativity constraints; (b) Objective functions.
16. Explain Least cost method.
17. What is artificial variable?
18. Define slack time and total float in the context of network model

Section C

Answer any six questions.
Each question carries 4 marks.
19. Why is CPM /PERT a popular and widely applied management science technique?
20. Explain Assignment problem.
21. Briefly Explain Big M Method.
22. Formulate dual of the following LPP :

$$
\text { Maximize } \mathrm{Z}=x_{1}-2 x_{2}+3 x_{3}
$$

Subject to, $2 x_{1}+x_{2}+3 x_{3}=2$

$$
\begin{array}{r}
2 x_{1}+3 x_{2}+4 x_{3}=1 \\
x_{1}, x_{2}, x_{3} \geq 0 .
\end{array}
$$

23. Define degeneracy in transportation problem. How is it resolved?
24. Explain the procedure of two phase method.
25. Describe the principle of duality in linear programming problem.
26. Write a short note on project crashing.
27. Explain the steps involved in dual simplex method.

$$
(6 \times 4=24 \text { marks })
$$

Section D

Answer any three questions. Each question carries 10 marks.
28. Solve the following problem using Simplex Method:

$$
\begin{aligned}
& \operatorname{Maximize} Z=5 x_{1}+3 x_{2} \\
& \text { Subject to : } \quad x_{1}+x_{2} \leq 2 \\
& 5 x_{1}+2 x_{2} \leq 10 \\
& 3 x_{1}+8 x_{2} \leq 12 \\
& x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

29. Use Two phase method to solve the LPP :

$$
\begin{array}{r}
\text { Maximize } Z=5 x-4 y+3 z \\
\text { Subject to } \quad 2 x+y-6 z=20 \\
6 x+5 y+10 z \leq 76 \\
8 x-3 y+6 z \leq 50 \\
x, y, z \geq 0
\end{array}
$$

30. Solve by Big M method:

$$
\begin{aligned}
& \text { Maximize } Z=6 x+4 y \\
& \text { Subject to : } \quad 2 x_{1}+3 y \leq 30 \\
& 3 x+2 y \leq 24 \\
& x+y \geq 3 \\
& x, y \geq 0
\end{aligned}
$$

31. Solve the transportation problem to minimize the total transportation cost :

> Supply

Demand | $\left(\begin{array}{cccc}7 & 9 & 3 & 2 \\ 4 & 4 & 3 & 5 \\ 6 & 4 & 5 & 8\end{array}\right)$ | 16 | | |
| :---: | :---: | :---: | :---: |
| 11 | 9 | 22 | 8 |

32. A small maintenance project consists of the following 10 jobs .Draw network diagram (arrow diagram). Calculate (1) T_{E} and T_{L} values of all events ; (2) EST, LST, EFT, LFT of all activities ; and (3) Floats of all the activities .Also obtain (a) Critical activities ; and (b) Project duration.

Activity :	$1-2$	$2-3$	$2-4$	$3-5$	$3-6$	$4-6$	$4-7$	$5-8$	$6-8$	$7-8$
Duration :	4	6	10	8	2	12	4	15	14	8
							$10=30$ marks $)$			

