(**Pages : 3**)

Nama	
rame.	
Reg. N	0

SECOND SEMESTER B.C.A. DEGREE EXAMINATION, MAY 2018

(CUCBCSS-UG)

Complementary Course

BCA 2C 04-NUMERICAL METHODS IN C

(2014-2016 Admissions)

Time : Three Hours

Maximum : 80 Marks

Part A (Objective Type Questions)

Answer all questions. Each question carries 1 mark.

- 1. An approximate value of $\sqrt{2} = 1.414214...$ is given 1.414. Find the absolute error and relative error.
- 2. State Rounding-off rule.
- 3. Calculate the value of $\sqrt{102} \sqrt{101}$ correct to four significant figures.
- 4. What is the order of convergence of Regula-Falsi method.
- 5. Write Newton-Raphson iterative formula for $\sqrt[k]{N}$.
- 6. Describe Gauss Elimination method briefly.
- 7. In numerical integration, what should be the number of intervals to apply Simpson's 1/3 rule and by Simpson's 3/8 rule.
- 8. Write Runge-Kutta formula of fourth order to solve $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$.
- 9. What is the order of the error in Simpson's 1/3-rule.
- 10. Write the relation between forward differences and backward differences.

 $(10 \times 1 = 10 \text{ marks})$

Part B (Short Answer Type)

Answer **all** questions. Each question carries 2 marks.

- 11. Three approximate values of number $\frac{1}{3}$ are given as 0.30, 0.33 and 0.34. Which of these three is the best approximation ?
- 12. Find an interval of unit length which contains the smallest positive root of the equation $x^3 3x 1 = 0$.

Turn over

- 13. Using Crammer's rule, solve the system 10x + y + z = 12, x + 10y + z = 12 and x + y + 10z = 12.
- 14. Prove that (i) $\nabla = I E^{-1}$; (ii) $E = e^{hD}$ where E is the shift operator and D is the differential operator.
- 15. Evaluate the integral $\int_0^{\pi/2} \sin x dx$, using Simpson's (3/8)-rule.

 $(5 \times 2 = 10 \text{ marks})$

Part C (Short Essay Type)

Answer any five questions. Each question carries 4 marks.

- 16. Find the number of trustworthy figures in $(367)^{1/5}$ where 367 is correct to three significant figures.
- 17. Find a positive root of the equation $e^{-x} = \sin x$ by Regula-Falsi method correct to three decimal places.
- 18. Solve the system of equations 2x 6y + 8z = 24; 5x + 4y 3z = 2; 3x + y + 2z = 16 by Gauss elimination method.
- 19. Find the Lagrange's interpolation polynomial fitting the points f(0) = 2, f(1) = 1, f(2) = 12.
- 20. Locate and correct the error in the following table of values :

x : 2.5 3.0 3.5 4.0 4.5 5.0 5.5

- y : 4.32 4.83 5.27 5.47 6.26 6.79 7.23
- 21. Prove the following :
 - (a) $\Delta \nabla = \nabla \Delta = \delta^2$.
 - (b) $\Delta(f_i^2) = (f_i + f_{i+1})\Delta f_i$.
- 22. Find $\frac{dy}{dx}$ at x = 1 from the following table :

x	:	0.7	0.8	0.9	1.0	1.1	1.2	1.3
у	:	0.644218	0.717356	0.783327	0.841471	0.891207	0.932039	0.963558

23. Given the differential equation $\frac{dy}{dx} = \frac{1}{x^2 + y^2}$ with y(4) = 4. Obtain y(4.1) and y(4.2) by Taylor's series method.

 $(5 \times 4 = 20 \text{ marks})$

Part D (Essay Questions)

Answer any five questions. Each question carries 8 marks.

- 24. (a) Find the relative error in computation of x + y for x = 11.75 and y = 7.23 having absolute errors $\Delta x = 0.002$ and $\Delta y = 0.005$.
 - (b) If a = 5.43 m and b = 3.82 m, where a and b denote the length and breadth of a rectangular plate, measured accurate up to 1 cm., find error in computing its area.

- 25. (a) Find a root of the equation $x^3 4x 9 = 0$ correct to three decimal places using Bisection method.
 - (b) Using Newton's method obtain a root of the equation $x^3 5x + 1 = 0$ correct to three decimal places starting with $x_0 = 0$.
- 26. Solve the system of equations 2x + y + z = 10; 3x + 2y + 3z = 18; x + 4y + 9z = 16 by Triangularization method.
- 27. Derive Newton's forward difference interpolation formula for equally spaced points.
- 28. For the following table of values, estimate f(7.5), using Newton's backward difference interpolation formula :
 - x : 1 2 3 5 6 7 8 4 125f(x): 1 8 27 64 $216 \quad 343$ 512
- 29. Given f(1) = -3, f(3) = 9, f(4) = 30, f(6) = 132, find f(x).
- 30. Evaluate $\int_0^{10} \frac{dx}{1+x^2}$ using Simpson's $\frac{1}{3}$ rule taking h = 1.

31. Solve $\frac{dy}{dx} = 1 - y$, y(0) = 0 in the range $0 \le x \le 0.3$ by taking h = 0.1 by modified Euler's method.

 $(5 \times 8 = 40 \text{ marks})$