\qquad
\qquad
SECOND SEMESTER B.C.A. DEGREE EXAMINATION, MAY 2018 (CUCBCSS-UG)
Complementary Course
BCA 2C 04-NUMERICAL METHODS IN C (2014-2016 Admissions)

Time : Three Hours

Maximum : 80 Marks

Part A (Objective Type Questions)

Answer all questions.
Each question carries 1 mark.

1. An approximate value of $\sqrt{2}=1.414214 \ldots$ is given 1.414 . Find the absolute error and relative error.
2. State Rounding-off rule.
3. Calculate the value of $\sqrt{102}-\sqrt{101}$ correct to four significant figures.
4. What is the order of convergence of Regula-Falsi method.
5. Write Newton-Raphson iterative formula for $\sqrt[k]{\mathrm{N}}$.
6. Describe Gauss Elimination method briefly.
7. In numerical integration, what should be the number of intervals to apply Simpson's $1 / 3$ rule and by Simpson's $3 / 8$ rule.
8. Write Runge-Kutta formula of fourth order to solve $\frac{d y}{d x}=f(x, y)$ with $y\left(x_{0}\right)=y_{0}$.
9. What is the order of the error in Simpson's $1 / 3$-rule.
10. Write the relation between forward differences and backward differences.

Part B (Short Answer Type)

Answer all questions.
Each question carries 2 marks.
11. Three approximate values of number $\frac{1}{3}$ are given as $0.30,0.33$ and 0.34 . Which of these three is the best approximation?
12. Find an interval of unit length which contains the smallest positive root of the equation $x^{3}-3 x-1=0$.
13. Using Crammer's rule, solve the system $10 x+y+z=12, x+10 y+z=12$ and $x+y+10 z=12$.
14. Prove that (i) $\nabla=\mathrm{I}-\mathrm{E}^{-1}$; (ii) $\mathrm{E}=e^{h \mathrm{D}}$ where E is the shift operator and D is the differential operator.
15. Evaluate the integral $\int_{0}^{\pi / 2} \sin x d x$, using Simpson's (3/8)-rule.

$$
(5 \times 2=10 \mathrm{marks})
$$

Part C (Short Essay Type)

Answer any five questions.
Each question carries 4 marks.
16. Find the number of trustworthy figures in $(367)^{1 / 5}$ where 367 is correct to three significant figures.
17. Find a positive root of the equation $e^{-x}=\sin x$ by Regula-Falsi method correct to three decimal places.
18. Solve the system of equations $2 x-6 y+8 z=24 ; 5 x+4 y-3 z=2 ; 3 x+y+2 z=16$ by Gauss elimination method.
19. Find the Lagrange's interpolation polynomial fitting the points $f(0)=2, f(1)=1, f(2)=12$.
20. Locate and correct the error in the following table of values :

$$
\begin{array}{ccccccccc}
x & : & 2.5 & 3.0 & 3.5 & 4.0 & 4.5 & 5.0 & 5.5 \\
y & : & 4.32 & 4.83 & 5.27 & 5.47 & 6.26 & 6.79 & 7.23
\end{array}
$$

21. Prove the following :
(a) $\Delta \nabla=\nabla \Delta=\delta^{2}$.
(b) $\Delta\left(f_{i}^{2}\right)=\left(f_{i}+f_{i+1}\right) \Delta f_{i}$.
22. Find $\frac{d y}{d x}$ at $x=1$ from the following table:
$\begin{array}{lllll}x: & 0.7 & 0.8 & 0.9\end{array}$
1.0
1.1
1.2
1.3
$\begin{array}{llllllll}y: & 0.644218 & 0.717356 & 0.783327 & 0.841471 & 0.891207 & 0.932039 & 0.963558\end{array}$
23. Given the differential equation $\frac{d y}{d x}=\frac{1}{x^{2}+y^{2}}$ with $y(4)=4$. Obtain $y(4.1)$ and $y(4.2)$ by Taylor's series method.
$(5 \times 4=20$ marks $)$

Part D (Essay Questions)

Answer any five questions.
Each question carries 8 marks.
24. (a) Find the relative error in computation of $x+y$ for $x=11.75$ and $y=7.23$ having absolute errors $\Delta x=0.002$ and $\Delta y=0.005$.
(b) If $a=5.43 \mathrm{~m}$ and $b=3.82 \mathrm{~m}$, where a and b denote the length and breadth of a rectangular plate, measured accurate up to 1 cm ., find error in computing its area.
25. (a) Find a root of the equation $x^{3}-4 x-9=0$ correct to three decimal places using Bisection method.
(b) Using Newton's method obtain a root of the equation $x^{3}-5 x+1=0$ correct to three decimal places starting with $x_{0}=0$.
26. Solve the system of equations $2 x+y+z=10 ; 3 x+2 y+3 z=18 ; x+4 y+9 z=16$ by Triangularization method.
27. Derive Newton's forward difference interpolation formula for equally spaced points.
28. For the following table of values, estimate $f(7.5)$, using Newton's backward difference interpolation formula :

x	$:$	1	2	3	4	5	6	7
$f(x):$	1	8	27	64	125	216	343	512

29. Given $f(1)=-3, f(3)=9, f(4)=30, f(6)=132$, find $f(x)$.
30. Evaluate $\int_{0}^{10} \frac{d x}{1+x^{2}}$ using Simpson's $\frac{1}{3}$ rule taking $h=1$.
31. Solve $\frac{d y}{d x}=1-y, y(0)=0$ in the range $0 \leq x \leq 0.3$ by taking $h=0.1$ by modified Euler's method.

$$
(5 \times 8=40 \text { marks })
$$

